In microfluidic systems, droplets undergo intricate deformations as they traverse flow-focusing junctions, posing a challenging task for accurate measurement, especially during short transit times. This study investigates the physical behavior of droplets within dense emulsions in diverse microchannel geometries, specifically focusing on the impact of varying opening angles within the primary channel and injection rates of fluid components. Employing a sophisticated droplet tracking tool based on deep-learning techniques, we analyze multiple frames from flow-focusing experiments to quantitatively characterize droplet deformation in terms of ratio between maximum width and height and propensity to form liquid with hexagonal spatial arrangement. Our findings reveal the existence of an optimal opening angle where shape deformations are minimal and hexagonal arrangement is maximal. Variations of fluid injection rates are also found to affect size and packing fraction of the emulsion in the exit channel. This paper offers insight into deformations, size, and structure of fluid emulsions relative to microchannel geometry and other flow-related parameters captured through machine learning, with potential implications for the design of microchips utilized in cellular transport and tissue engineering applications.

1.
S. Y.
Teh
,
R.
Lin
,
L. H.
Hung
, and
A. P.
Lee
, “
Droplet microfluidics
,”
Lab Chip
8
,
198
220
(
2008
).
2.
R.
Seemann
,
M.
Brinkmann
,
T.
Pfohl
, and
S.
Herminghaus
, “
Droplet based microfluidics
,”
Rep. Prog. Phys.
75
,
016601
(
2012
).
3.
A. R.
Abate
,
T.
Hung
,
P.
Mary
,
J. J.
Agresti
, and
D. A.
Weitz
, “
High-throughput injection with microfluidicsusing picoinjectors
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
19163
19166
(
2010
).
4.
G.
Muschiolik
, “
Multiple emulsions for food use
,”
Curr. Opin. Colloid Interface Sci.
12
,
213
220
(
2007
).
5.
O.
Skurtys
and
J. M.
Aguilera
, “
Applications of microfluidic devices in food engineering
,”
Food Biophys.
3
,
1
15
(
2008
).
6.
S.
He
,
N.
Joseph
,
S.
Feng
,
M.
Jellicoe
, and
C. L.
Raston
, “
Application of microfluidic technology in food processing
,”
Food Funct.
11
,
5726
5737
(
2020
).
7.
Q. B.
Xu
,
M.
Hashimoto
,
T. T.
Dang
,
T.
Hoare
,
D. S.
Kohane
,
G. M.
Whitesides
,
R.
Langer
, and
D. G.
Anderson
, “
Preparation of monodisperse biodegradable polymer microparticles using a microfluidic flow-focusing device for controlled drug delivery
,”
Small
5
,
1575
1581
(
2009
).
8.
G. T.
Vladisavljević
,
N.
Khalid
,
M. A.
Neves
,
T.
Kuroiwa
,
M.
Nakajima
,
K.
Uemura
,
S.
Ichikawa
, and
I.
Kobayashi
, “
Industrial lab-on-a-chip: Design, applications and scale-up for drug discovery and delivery
,”
Adv. Drug Del. Rev.
65
,
1626
1663
(
2013
).
9.
F.
He
,
M.-J.
Zhang
,
W.
Wang
,
Q.-W.
Cai
,
Y.-Y.
Su
,
Z.
Liu
,
Y.
Faraj
,
X.-J.
Ju
,
R.
Xie
, and
L.-Y.
Chu
, “
Designable polymeric microparticles from droplet microfluidics for controlled drug release
,”
Adv. Mater. Technol.
4
,
1800687
(
2019
).
10.
D.
Dendukuri
and
P. S.
Doyle
, “
The synthesis and assembly of polymeric microparticles using microfluidics
,”
Adv. Mater.
21
,
4071
4086
(
2009
).
11.
A.
Walther
and
A. H. E. a
Müller
, “
Janus particles: Synthesis, self-assembly, physical properties, and applications
,”
Chem. Rev.
113
,
5194
5261
(
2013
).
12.
C. W.
Visser
,
T.
Kamperman
,
L. P.
Karbaat
,
D.
Lohse
, and
M.
Karperien
, “
In-air microfluidics enables rapid fabrication of emulsions, suspensions, and 3D modular (bio)materials
,”
Sci. Adv.
4
,
1
(
2018
).
13.
K. S.
Zhang
,
A. V.
Nadkarni
,
R.
Paul
,
A. M.
Martin
, and
S. K. Y.
Tang
, “
Microfluidic surgery in single cells and multicellular systems
,”
Chem. Rev.
122
,
7097
7141
(
2022
).
14.
S. L.
Anna
, “
Droplets and bubbles in microfluidic devices
,”
Annu. Rev. Fluid Mech.
48
,
285
309
(
2016
).
15.
L.
Derzsi
,
D.
Filippi
,
G.
Mistura
,
M.
Pierno
,
M.
Lulli
,
M.
Sbragaglia
,
M.
Bernaschi
, and
P.
Garstecki
, “
Fluidization and wall slip of soft glassy materials by controlled surface roughness
,”
Phys. Rev. E
95
,
052602
(
2017
).
16.
F.
Milan
,
L.
Biferale
,
M.
Sbragaglia
, and
F.
Toschi
, “
Lattice Boltzmann simulations of droplet breakup in confined and time-dependent flows
,”
Phys. Rev. Fluids
5
,
033607
(
2020
).
17.
M.
Lulli
,
R.
Benzi
, and
M.
Sbragaglia
, “
Metastability at the yield-stress transition in soft glasses
,”
Phys. Rev. X
8
,
021031
(
2018
).
18.
F.
Pelusi
,
M.
Sbragaglia
,
A.
Scagliarini
,
M.
Lulli
,
M.
Bernaschi
, and
S.
Succi
, “
On the impact of controlled wall roughness shape on the flow of a soft material
,”
Europhys. Lett.
127
,
34005
(
2019
).
19.
Y.
Gai
,
C. M.
Leong
,
W.
Cai
, and
S. K. Y.
Tang
, “
Spatiotemporal periodicity of dislocation dynamics in a two-dimensional microfluidic crystal flowing in a tapered channel
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
12082
12087
(
2016
).
20.
J. P.
Raven
and
P.
Marmottant
, “
Microfluidic crystals: Dynamic interplay between rearrangement waves and flow
,”
Phys. Rev. Lett.
102
,
084501
(
2009
).
21.
P. S.
Dittrich
and
A.
Manz
, “
Lab-on-a-chip: Microfluidics in drug discovery
,”
Nat. Rev. Drug Discov.
5
,
210
218
(
2006
).
22.
S.
Köster
,
F.
Angilé
,
H.
Duan
,
J. J.
Agresti
,
A.
Wintner
,
C.
Schmitz
,
A. C.
Rowat
,
C. A.
Merten
,
D.
Pisignano
,
A. D.
Griffiths
, and
D. A.
Weitz
, “
Drop-based microfluidic devices for encapsulation of single cells
,”
Lab Chip
8
,
1110
1115
(
2008
).
23.
F.
Diotallevi
,
L.
Biferale
,
S.
Chibbaro
,
A.
Lamura
,
G.
Pontrelli
,
M.
Sbragaglia
,
S.
Succi
, and
F.
Toschi
, “
Capillary filling using lattice Boltzmann equations: The case of multi-phase flows
,”
Eur. Phys. J. Spec. Top.
166
,
111
116
(
2009
).
24.
A.
Montessori
,
A.
Tiribocchi
,
M.
Lauricella
,
F.
Bonaccorso
, and
S.
Succi
, “
Mesoscale modelling of droplets' self-assembly in microfluidic channels
,”
Soft Matter
17
,
2374
2483
(
2021
).
25.
A.
Montessori
,
M.
Lauricella
,
A.
Tiribocchi
, and
S.
Succi
, “
Modeling pattern formation in soft flowing crystals
,”
Phys. Rev. Fluids
4
,
072201
(
2019
).
26.
P.
Kernakov
,
S.
Litvinov
, and
P.
Koumoutsakos
, “
Computing foaming flows across scales: From breaking waves to microfluidics
,”
Sci. Adv.
8
,
5
(
2022
).
27.
A.
Montessori
,
M.
Lauricella
, and
A.
Tiribocchi
, “
Computational droplets: Where we stand and how far we can go
,”
Europhys. Lett.
138
,
67001
(
2022
).
28.
P.
Marmottant
and
J. P.
Raven
, “
Microfluidics with foams
,”
Soft Matter
5
,
3385
3388
(
2009
).
29.
P.
Garstecki
and
G. M.
Whitesides
, “
Flowing crystals: Nonequilibrium structure of foam
,”
Phys. Rev. Lett.
97
,
024503
(
2006
).
30.
R.
Riahi
,
A.
Tamayol
,
S. A. M.
Shaegh
,
A. M.
Ghaemmaghami
,
M. R.
Dokmeci
, and
A.
Khademhosseini
, “
Microfluidics for advanced drug delivery systems
,”
Curr. Opin. Chem. Eng.
7
,
101
112
(
2015
).
31.
S.
Gurram
,
D. K.
Jha
,
D. S.
Shah
,
M. M.
Kshirsagar
, and
P. D.
Amin
, “
Insights on the critical parameters affecting the probiotic viability during stabilization process and formulation development
,”
AAPS PharmSciTech
22
,
156
(
2021
).
32.
A. R.
Abate
,
A.
Poitzsch
,
Y.
Hwang
,
J.
Lee
,
J.
Czerwinska
, and
D. A.
Weitz
, “
Impact of inlet channel geometry on microfluidic drop formation
,”
Phys. Rev. E
80
,
026310
(
2009
).
33.
A. L. R.
Costa
,
A.
Gomes
, and
R. L.
Cunha
, “
Studies of droplets formation regime and actual flow rate of liquid-liquid flows in flow-focusing microfluidic devices
,”
Exp. Therm. Fluid Sci.
85
,
167
175
(
2017
).
34.
M.
Saqib
,
O. B.
Şahinoğlu
, and
E. Y.
Erdem
, “
Alternating droplet formation by using tapered channel geometry
,”
Sci. Rep.
8
,
1606
(
2018
).
35.
O.
Sartipzadeh
,
S. M.
Naghib
,
A.
Seyfoori
,
M.
Rahmanian
, and
F. S.
Fateminia
, “
Controllable size and form of droplets in microfluidic-assisted devices: Effects of channel geometry and fluid velocity on droplet size
,”
Mater. Sci. Eng.: C
109
,
110606
(
2020
).
36.
Y.
Saffar
,
D. S.
Nobes
, and
R.
Sabbagh
, “
Experimental investigation of the motion and deformation of droplets in curved microchannel
,”
Ind. Eng. Chem. Res.
62
,
17275
17286
(
2023
).
37.
E.
Amstad
,
M.
Chemama
,
M.
Eggersdorfer
,
L. R.
Arriaga
,
M. P.
Brenner
, and
D. A.
Weitz
, “
Robust scalable high throughput production of monodisperse drops
,”
Lab Chip
16
,
4163
4172
(
2016
).
38.
A. S.
Utada
,
E.
Lorenceau
,
D. R.
Link
,
P. D.
Kaplan
,
H. A.
Stone
, and
D. A.
Weitz
, “
Monodisperse double emulsions generated from a microcapillary device
,”
Science
308
,
537
541
(
2005
).
39.
D.
Vecchiolla
,
V.
Giri
, and
S. L.
Biswal
, “
Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation
,”
Soft Matter
14
,
9312
9325
(
2018
).
40.
R.
Su
,
F.
Wang
, and
M. C.
McAlpine
, “
3D printed microfluidics: Advances in strategies, integration, and applications
,”
Lab Chip
23
,
1279
1299
(
2023
).
41.
M.
Durve
,
F.
Bonaccorso
,
A.
Montessori
,
M.
Lauricella
,
A.
Tiribocchi
, and
S.
Succi
, “
A fast and efficient deep learning procedure for tracking droplet motion in dense microfluidic emulsions
,”
Philos. Trans. R. Soc., A
379
,
2208
(
2021
).
42.
M.
Durve
,
F.
Bonaccorso
,
A.
Montessori
,
M.
Lauricella
,
A.
Tiribocchi
, and
S.
Succi
, “
Tracking droplets in soft granular flows with deep learning techniques
,”
Eur. Phys. J. Plus
136
,
864
(
2021
).
43.
M.
Durve
,
A.
Tiribocchi
,
F.
Bonaccorso
,
A.
Montessori
,
M.
Lauricella
,
M.
Bogdan
,
J.
Guzowski
, and
S.
Succi
, “
Droptrack-automatic droplet tracking with YOLOv5 and DeepSORT for microfluidic applications
,”
Phys. Fluids
34
,
082003
(
2022
).
44.
M.
Durve
,
S.
Orsini
,
A.
Tiribocchi
,
A.
Montessori
,
J. M.
Tucny
,
M.
Lauricella
,
A.
Camposeo
,
D.
Pisignano
, and
S.
Succi
, “
Benchmarking YOLOv5 and YOLOv7 models with DeepSORT for droplet tracking applications
,”
Eur. Phys. J. E
46
,
32
(
2023
).
45.
J.
Redmon
,
S.
Divvala
,
R.
Girshick
, and
A.
Farhadi
, “
You only look once: Unified, real-time object detection
,”
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(IEEE,
2016
), pp.
779
788
.
46.
K.
Guevorkian
,
M. J.
Colbert
,
M.
Durth
,
S.
Dufour
, and
F. A.
Brochard-Wyart
, “
Aspiration of biological viscoelastic drops
,”
Phys. Rev. Lett.
104
,
218101
(
2010
).
47.
S.
Douezan
,
K.
Guevorkian
,
R.
Naouar
,
S.
Dufour
,
D.
Cuvelier
, and
F.
Brochard-Wyart
, “
Spreading dynamics and wetting transition of cellular aggregates
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
7315
(
2011
).
48.
M.
Costantini
,
C.
Colosi
,
J.
Guzowski
,
A.
Barbetta
,
J.
Jaroszewicz
,
W.
Świeszkowski
,
M.
Dentini
, and
P.
Garstecki
, “
Highly ordered and tunable polyhipes by using microfluidics
,”
J. Mater. Chem. B
2
,
2290
(
2014
).
49.
M.
Bogdan
,
A.
Montessori
,
A.
Tiribocchi
,
F.
Bonaccorso
,
M.
Lauricella
,
L.
Jurkiewicz
,
S.
Succi
, and
J.
Guzowski
, “
Stochastic jetting and dripping in confined soft granular flows
,”
Phys. Rev. Lett.
128
,
128001
(
2022
).
50.
A.
Tiribocchi
,
M.
Durve
,
M.
Lauricella
,
A.
Montessori
,
D.
Marenduzzo
, and
S.
Succi
, “
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices
,”
Nat. Commun.
14
,
1096
(
2023
).
51.
A.
Montessori
,
A.
Tiribocchi
,
M.
Bogdan
,
F.
Bonaccorso
,
M.
Lauricella
,
J.
Guzowski
, and
S.
Succi
, “
Translocation dynamics of high-internal phase double emulsions innarrow channels
,”
Langmuir
37
,
9026
9033
(
2021
).
52.
S. H.
Au
,
B. D.
Storey
,
J. C.
Moore
,
Q.
Tang
,
Y. L.
Chen
,
S.
Javaid
,
A. F.
Sarioglu
,
R.
Sullivan
,
M. W.
Madden
,
R.
O'Keefe
,
D. A.
Haber
,
S.
Maheswaran
,
D. M.
Langenau
,
S. L.
Stott
, and
M.
Toner
, “
Clusters of circulating tumor cells traverse capillary-sized vessels
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
4947
(
2016
).
53.
K.
Pays
,
J.
Giermanska-Kahn
,
B.
Pouligny
,
J.
Bibette
, and
F.
Leal-Calderon
, “
Double emulsions: How does release occur?
,”
J. Controlled Release
79
,
193
(
2002
).
54.
G.
Pontrelli
,
E. J.
Carr
,
A.
Tiribocchi
, and
S.
Succi
, “
Modeling drug delivery from multiple emulsions
,”
Phys. Rev. E
102
,
023114
(
2020
).
55.
A.
D'Orazio
and
S.
Succi
, “
Boundary conditions for thermal lattice Boltzmann simulations
,” in
Computational Science—ICCS 2003
, edited by
P. M. A.
Sloot
,
D.
Abramson
,
A. V.
Bogdanov
,
J. J.
Dongarra
,
A. Y.
Zomaya
, and
Y. E.
Gorbachev
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2003
), pp.
977
986
.
56.
D.
McIntyre
,
A.
Lashkaripour
,
P.
Fordyce
, and
D.
Densmore
, “
Machine learning for microfluidic design and control
,”
Lab Chip
22
,
2925
(
2022
).
57.
A.
Lashkaripour
,
C.
Rodriguez
,
N.
Mehdipour
,
R.
Mardian
,
D.
McIntyre
,
L.
Ortiz
,
J.
Campbell
, and
D.
Densmore
, “
Machine learning enables design automation of microfluidic flow-focusing droplet generation
,”
Nat. Commun.
12
,
25
(
2021
).
You do not currently have access to this content.