We explore the dynamics of droplet propagation and subsequent disintegration in a symmetric bifurcating Y-microchannel by varying the wettability characteristics of one of the daughter channels while maintaining the wettability of the other constant. The temporal evolution of the droplet is numerically investigated using the phase-field method. Based on the neck-width evolution, the droplet bifurcation phenomenon has been divided into three separate stages, namely, squeezing, transition, and pinch-off. During the squeezing stage, the rate of change of neck width increases as the wettability angle decreases, while an opposite trend is observed at the pinch-off stage, leading to almost identical breakup time for the droplet regardless of the wettability angle. We identify pertinent regimes of droplet breakup, such as symmetric breakup, asymmetric breakup, no-breakup upper channel, no-breakup lower channel, and spreading regime, over wide ranges of capillary numbers (Ca) and viscosity ratio ( μ r). Our study indicates that an increase in the relative influence of viscous force (high Ca) reduces the droplet's wettability effect. The same pattern is obtained when the viscosity of the droplet is increased in relation to the viscosity of the carrier fluid. In contrast, for low Ca flows, the relatively strong interfacial tension favors the wettability characteristics of the surface, resulting in a dominance of non-breakup regimes. The regime plots proposed in this paper depict the roles of Ca and μ r on various breakup regimes in detail. Such regime diagrams may emerge as fundamental design basis of microfluidic devices in diverse applications, such as biopharmaceuticals, microreactors, and food processing.

1.
D. R.
Link
,
E. G.
Mongrain
,
A.
Duri
,
F.
Sarrazin
,
Z.
Cheng
,
G.
Cristobal
,
M.
Marquez
, and
D. A.
Weitz
, “
Electric control of droplets in microfluidic devices
,”
Angew. Chem. -Int. Ed.
45
,
2556
2560
(
2006
).
2.
A. J.
Calderon
,
J. B.
Fowlkes
, and
J. L.
Bull
, “
Bubble splitting in bifurcating tubes: A model study of cardiovascular gas emboli transport
,”
J. Appl. Physiol.
99
,
479
487
(
2005
).
3.
S. Y.
Kashani
,
A.
Afzalian
,
F.
Shirinichi
, and
M. K.
Moraveji
, “
Microfluidics for core–shell drug carrier particles—A review
,”
RSC Adv.
11
,
229
249
(
2021
).
4.
J. K.
Lee
,
S.
Banerjee
,
H. G.
Nam
, and
R. N.
Zare
, “
Acceleration of reaction in charged microdroplets
,”
Q. Rev. Biophys.
48
,
437
444
(
2015
).
5.
Z.
Meng
,
M.
Zhang
, and
H.
Yang
, “
Pickering emulsion droplets hosting ionic liquid catalysts for continuous-flow cyanosilylation reaction
,”
Green Chem.
21
,
627
633
(
2019
).
6.
A.
Gupta
and
R.
Kumar
, “
Flow regime transition at high capillary numbers in a microfluidic T-junction: Viscosity contrast and geometry effect
,”
Phys. Fluids
22
,
122001
(
2010
).
7.
Y.
Ren
,
Z.
Liu
, and
H. C.
Shum
, “
Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem
,”
Lab Chip
15
,
121
134
(
2015
).
8.
S.
Das
,
S.
Mandal
,
S. K.
Som
, and
S.
Chakraborty
, “
Effect of interfacial slip on the deformation of a viscoelastic drop in uniaxial extensional flow field
,”
Phys. Fluids
29
,
032105
(
2017
).
9.
S.
Mandal
,
S.
Sinha
,
A.
Bandopadhyay
, and
S.
Chakraborty
, “
Drop deformation and emulsion rheology under the combined influence of uniform electric field and linear flow
,”
J. Fluid Mech.
841
,
408
433
(
2018
).
10.
I. L.
Ngo
,
S.
Woo Joo
, and
C.
Byon
, “
Effects of junction angle and viscosity ratio on droplet formation in microfluidic cross-junction
,”
J. Fluids Eng.
138
,
051202
(
2016
).
11.
M.
Nekouei
and
S. A.
Vanapalli
, “
Volume-of-fluid simulations in microfluidic T-junction devices: Influence of viscosity ratio on droplet size
,”
Phys. Fluids
29
,
032007
(
2017
).
12.
A.
Riaud
,
H.
Zhang
,
X.
Wang
,
K.
Wang
, and
G.
Luo
, “
Numerical study of surfactant dynamics during emulsification in a T-junction micro-channel
,”
Langmuir
34
,
4980
4990
(
2018
).
13.
B.
Rostami
and
G. L.
Morini
, “
Generation of Newtonian and non-Newtonian droplets in silicone oil flow by means of a micro cross- junction
,”
Int. J. Multiphase Flow
105
,
202
216
(
2018
).
14.
Y.
Ren
,
K. S.
Koh
,
J. K.
Chin
,
J.
Wang
,
C.
Wen
, and
Y.
Yan
, “
Droplet formation and fission in shear-thinning/Newtonian multiphase system using bilayer bifurcating microchannel
,”
J. Heat Transfer
140
,
012405
(
2018
).
15.
B.
Rostami
and
G. L.
Morini
, “
Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers
,”
Exp. Therm. Fluid Sci.
103
,
191
200
(
2019
).
16.
C.
Haringa
,
C.
de Jong
,
D. A.
Hoang
,
L. M.
Portela
,
C. R.
Kleijn
,
M. T.
Kreutzer
, and
V.
van Steijn
, “
Breakup of elongated droplets in microfluidic T-junctions
,”
Phys. Rev. Fluids
4
,
024203
(
2019
).
17.
P.
Randive
,
A.
Dalal
,
K. C.
Sahu
,
G.
Biswas
, and
P. P.
Mukherjee
, “
Wettability effects on contact line dynamics of droplet motion in an inclined channel
,”
Phys. Rev. E
91
,
053006
(
2015
).
18.
G.
Karapetsas
,
N. T.
Chamakos
, and
A. G.
Papathanasiou
, “
Thermocapillary droplet actuation: Effect of solid structure and wettability
,”
Langmuir
33
,
10838
10850
(
2017
).
19.
D.
Xu
,
Y.
Ba
,
J.
Sun
, and
X.
Fu
, “
A numerical study of micro-droplet spreading behaviors on wettability-confined tracks using three-dimensional phase-field lattice Boltzmann model
,”
Langmuir
36
,
340
353
(
2020
).
20.
S.
Bhardwaj
,
A.
Dalal
,
G.
Biswas
, and
P. P.
Mukherjee
, “
Analysis of droplet dynamics in a partially obstructed confinement in a three-dimensional channel
,”
Phys. Fluids
30
,
102102
(
2018
).
21.
P.
Randive
,
A.
Dalal
, and
P. P.
Mukherjee
, “
Probing the influence of confinement and wettability on droplet displacement behavior: A mesoscale analysis
,”
Eur. J. Mech. B/Fluids
75
,
327
338
(
2019
).
22.
S.
Das
,
S.
Mandal
, and
S.
Chakraborty
, “
Effect of transverse temperature gradient on the migration of a deformable droplet in a Poiseuille flow
,”
J. Fluid Mech.
850
,
1142
1171
(
2018
).
23.
P.
Kumari
and
A.
Atta
, “
Non-Newtonian droplet breakup in a T-junction microdevice containing constriction induced asymmetric parallel branches
,”
Phys. Fluids
35
,
022004
(
2023
).
24.
S.
Li
,
L.
Wen
, and
W.
Wang
, “
Asymmetric breakup of a single droplet through a Y-junction microchannel with non-uniform flowrate
,”
Phys. Fluids
35
,
042015
(
2023
).
25.
S. P.
Pandey
,
S.
Sarkar
, and
D.
Pal
, “
Splitting of microbubble mediated by power-law carrier fluid inside a symmetric bifurcating channel
,”
Phys. Fluids
35
,
053104
(
2023
).
26.
Z.
Liu
,
P.
Su
,
Y.
Pang
,
W.
Liu
,
Z.
Wang
, and
X.
Wang
, “
Dynamic mechanism of double emulsion droplets flowing through a microfluidic T-junction
,”
Phys. Fluids
35
,
072001
(
2023
).
27.
Y.
Pang
,
S.
Jioa
,
Y.
Lu
,
Q.
Yang
,
X.
Wang
, and
Z.
Liu
, “
Asymmetric branch selection and splitting of droplets in T-junction microchannels
,”
Phys. Fluids
35
,
072013
(
2023
).
28.
A. Z.
Zinchenko
and
R. H.
Davis
, “
Numerical simulation of deformable droplets in three-dimensional, complex-shaped microchannels
,”
Phys. Fluids
35
,
102013
(
2023
).
29.
Z.
Liu
,
Z.
Wang
,
Y.
Pang
,
P.
Su
, and
X.
Wang
, “
Adjustable behaviors and dynamic mechanisms of droplets in the cross junction
,”
Phys. Fluids
35
,
112009
(
2023
).
30.
G.
Imani
,
L.
Zhang
,
J.
Maweja
,
H.
Sun
,
D.
Fan
,
M.
Ntibahanana
,
L.
Hou
,
Y.
Yang
, and
J.
Yao
, “
Effect of roughness on droplet motion in a capillary channel: A numerical study
,”
Phys. Fluids
35
,
112011
(
2023
).
31.
L.
He
,
S.
Wang
, and
Y.
Yuan
, “
Deformation dynamics of rear concave droplet enclosed by nanoparticle surfactants in a capillary
,”
Phys. Fluids
35
,
122112
(
2023
).
32.
J.
Mandal
,
S.
Sarkar
, and
S.
Sen
, “
A deterministic model for bubble propagation through simple and cascaded loops of microchannel in power-law fluids
,”
Phys. Fluids
33
,
072008
(
2021
).
33.
Z.
Liu
,
F.
Cai
,
Y.
Pang
,
Y.
Ren
,
N.
Zheng
,
R.
Chen
, and
S.
Zhao
, “
Enhanced droplet formation in a T-junction microchannel using electric field: A lattice Boltzmann study
,”
Phys. Fluids
34
,
082006
(
2022
).
34.
S.
Shyam
,
B.
Dhapola
, and
P. K.
Mondal
, “
Magnetic-based controlled droplet breakup: Effect of non-uniform force field
,”
J. Fluid Mech.
944
,
A51
(
2022
).
35.
S. H.
Tan
,
N. T.
Nguyen
,
L.
Yobas
, and
T. G.
Kang
, “
Formation and manipulation of ferrofluid droplets at a microfluidic T-junction
,”
J. Micromech. Microeng.
20
,
045004
(
2010
).
36.
S. V.
Loo
,
S.
Stoukatch
,
M.
Kraft
, and
T.
Gilet
, “
Droplet formation by squeezing in a microfluidic cross-junction
,”
Microfluid. Nanofluid.
20
,
146
(
2016
).
37.
W.
Du
,
T.
Fu
,
Q.
Zhang
,
C.
Zhu
,
Y.
Ma
, and
H. Z.
Li
, “
Breakup dynamics for droplet formation in a flow-focusing device: Rupture position of viscoelastic thread from matrix
,”
Chem. Eng. Sci.
153
,
255
269
(
2016
).
38.
Y.
Li
,
K. R.
Ward
, and
M. A.
Burns
, “
Viscosity measurements using microfluidic droplet length
,”
Anal. Chem.
89
,
3996
4006
(
2017
).
39.
Y.
Lu
,
T.
Fu
,
C.
Zhu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of bubble breakup at a T junction
,”
Phys. Rev. E
93
,
022802
(
2016
).
40.
X.
Wang
,
C.
Zhu
,
Y.
Wu
,
T.
Fu
, and
Y.
Ma
, “
Dynamics of bubble breakup with partly obstruction in a microfluidic T-junction
,”
Chem. Eng. Sci.
132
,
128
138
(
2015
).
41.
D.
Yu
,
M.
Zheng
,
T.
Jin
, and
J.
Wang
, “
Asymmetric breakup of a droplet in an axisymmetric extensional flow
,”
Chin. J. Chem. Eng.
24
,
63
70
(
2016
).
42.
Z.
Liu
,
X.
Wang
,
R.
Cao
, and
Y.
Pang
, “
Droplet coalescence at microchannel intersection chambers with different shapes
,”
Soft Matter
12
,
5797
5807
(
2016
).
43.
M. C.
Jullien
,
M. J. T. M.
Ching
,
C.
Cohen
,
L.
Menetrier
, and
P.
Tabeling
, “
Droplet breakup in microfluidic T-junctions at small capillary numbers
,”
Phys. Fluids
21
,
072001
(
2009
).
44.
A. M.
Leshansky
and
L. M.
Pismen
, “
Breakup of drops in a microfluidic T junction
,”
Phys. Fluids
21
,
023303
(
2009
).
45.
M.
Yamada
,
S.
Doi
,
H.
Maenaka
,
M.
Yasuda
, and
M.
Seki
, “
Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis
,”
J. Colloid Interface Sci.
321
,
401
407
(
2008
).
46.
Y.
He
,
J.
Pei
,
C.
Srinivasakannan
,
S.
Li
,
J.
Peng
,
S.
Guo
,
L.
Zhang
, and
S.
Yin
, “
Extraction of samarium using a serpentine Y-junction microreactor with 2- ethylhexyl phosphonic acid mono-2-ethylhexyl
,”
Hydrometallurgy
179
,
175
180
(
2018
).
47.
A.
Carlson
,
M. D.
Quang
, and
G.
Amberg
, “
Droplet dynamics in a bifurcating channel
,”
Int. J. Multiphase Flow
36
,
397
405
(
2010
).
48.
Q.
Kang
,
D.
Zhang
, and
S.
Chen
, “
Displacement of a three-dimensional immiscible droplet in a duct
,”
J. Fluid Mech.
545
,
41
66
(
2005
).
49.
M. P.
Boruah
,
A.
Sarker
,
P. R.
Randive
,
S.
Pati
, and
S.
Chakraborty
, “
Wettability-mediated dynamics of two-phase flow in microfluidic T-junction
,”
Phys. Fluids
30
,
122106
(
2018
).
50.
D. K.
Deka
,
M. P.
Boruah
,
S.
Pati
,
P. R.
Randive
, and
P. P.
Mukherjee
, “
Tuning the splitting behavior of droplet in a bifurcating channel through wettability-capillarity interaction
,”
Langmuir
36
,
10471
10489
(
2020
).
51.
D.
Jacqmin
, “
Calculation of two-phase Navier-Stokes flows using phase-field modeling
,”
J. Comput. Phys.
155
,
96
(
1999
).
52.
M.
De Menech
, “
Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model
,”
Phys. Rev. E
73
,
031505
(
2006
).
53.
H. A.
AkhlaghiAmiri
and
A. A.
Hamouda
, “
Evaluation of level set and phase field methods in modeling two phase flow with viscosity contrast through dual-permeability porous medium
,”
Int. J. Multiphase Flow
52
,
22
34
(
2013
).
54.
F.
Bai
,
X.
He
,
X.
Yang
,
R.
Zhou
, and
C.
Wang
, “
Three dimensional phase-field investigation of droplet formation in microfluidic flow focusing devices with experimental validation
,”
Int. J. Multiphase Flow
93
,
130
141
(
2017
).
55.
COMSOL
,
COMSOL Multiphysics Reference Manual, COMSOL Multiphysics®v. 5.3 a
, Stock, Sweden,
2017
.
56.
F. O.
Alpak
,
B.
Riviere
, and
F.
Frank
, “
A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition
,”
Comput. Geosci.
20
,
881
(
2016
).
57.
F.
Pigeonneau
,
E.
Hachem
, and
P.
Saramito
, “
Discontinuous Galerkin finite element method applied to the coupled unsteady Stokes/Cahn-Hilliard equations
,”
Int. J. Numer. Methods Fluids
90
,
267
295
(
2019
).
58.
P. K.
Mondal
,
U.
Ghosh
,
A.
Bandopadhyay
,
D.
Dasgupta
, and
S.
Chakraborty
, “
Electric-field-driven contact-line dynamics of two immiscible fluids over chemically patterned surfaces in narrow confinements
,”
Phys. Rev. E
88
,
023022
(
2013
).
59.
S.
Prokopev
,
A.
Vorobev
, and
T.
Lyubimova
, “
Phase-field modeling of an immiscible liquid-liquid displacement in a capillary
,”
Phys. Rev. E
99
,
033113
(
2019
).
60.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of Poiseuille flow and moving contact lines
,”
Phys. Rev. Lett.
60
,
1282
(
1988
).
61.
E. B.
Dussan
V
, “
On the Spreading of liquids on solid surfaces: Static and dynamic
,”
Annu. Rev. Fluid Mech.
11
,
371
(
1979
).
62.
E. B.
Dussan
V
and
S. H.
Davis
, “
On the motion of a fluid-fluid interface along a solid surface
,”
J. Fluid Mech.
65
,
71
(
1974
).
63.
E. B.
Dussan
V
, “
The moving contact line: The slip boundary condition
,”
J. Fluid Mech.
77
,
665
684
(
1976
).
64.
D.
Jacqmin
, “
Contact-line dynamics of a diffuse fluid interface
,”
J. Fluid Mech.
402
,
57
(
2000
).
65.
P.
Yue
,
C.
Zhou
, and
J. J.
Feng
, “
Spontaneous shrinkage of drops and mass conservation in phase-field simulations
,”
J. Comput. Phys.
223
,
1
(
2007
).
66.
S.
Dutta
,
P. S.
GoohPattader
, and
D.
Bandyopadhyay
, “
Numerical investigations of electric field-mediated active droplet transfer in a ternary phase system
,”
Phys. Fluids
34
(
10
),
103304
(
2022
).
67.
J.
Chaudhuri
,
T. K.
Mandal
, and
D.
Bandyopadhyay
, “
Single and double toroid formation during oil droplet impact on an air–water interface at low Reynolds number
,”
Phys. Fluids
34
,
012011
(
2022
).
68.
B.
Chen
,
G.
Li
,
W.
Wang
, and
P.
Wang
, “
3D numerical simulation of droplet passive breakup in a micro-channel T-junction using the volume-of-fluid method
,”
Appl. Therm. Eng.
88
,
94
101
(
2015
).
69.
F. P.
Bretherton
, “
The motion of long bubbles in tubes
,”
J. Fluid Mech.
10
,
166
188
(
1961
).
70.
D.
Ma
,
D.
Liang
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
,
X.
Yuan
, and
H. Z.
Li
, “
The breakup dynamics and mechanism of viscous droplets in Y-shaped microchannels
,”
Chem. Eng. Sci.
231
,
116300
(
2021
).
71.
X.
Sun
,
C.
Zhu
,
T.
Fu
,
Y.
Ma
, and
H. Z.
Li
, “
Dynamics of droplet breakup and formation of satellite droplets in a microfluidic T-junction
,”
Chem. Eng. Sci.
188
,
158
169
(
2018
).
72.
Q.
Lou
,
T.
Li
, and
M.
Yang
, “
Numerical simulation of the bubble dynamics in a bifurcated micro-channel using the lattice Boltzmann method
,”
J. Appl. Phys.
126
,
034301
(
2019
).
You do not currently have access to this content.