In the present study, numerical simulations are conducted to investigate the hydrodynamic benefits of a self-propelled oscillatory ray with passive flexibility compared to those with active flexibility. For the active flexibility case, the prescribed motion is applied to the entire surface of the ray. On the other hand, for the passive flexibility case, the motion of the leading edges is only prescribed, whereas that of the rest parts is determined by the interaction with the surrounding fluid. The cruising speed and input power of the ray with passive flexibility increase as the horizontal bending rigidity decreases, and its propulsive efficiency is maximized at a specific horizontal bending rigidity. Compared to the active flexibility case, the propulsive performance of the oscillatory ray with passive flexibility is improved by not only enhanced circulation and added-mass effects but also by the favorable repartition of the resultant force caused by a large deflection angle. Strong vortical structures induced by a large deformation over the entire region of the fin generate strong negative pressure on the forward side of the overall surface, even near the central body (i.e., increased circulation effect). Furthermore, the positive pressure on the backward side increases in the passive flexibility case due to high fin acceleration caused by more intense oscillating motions (i.e., increased added-mass effect). When the oscillating frequency and the Reynolds number vary, the performance of the ray with passive flexibility is confirmed to be higher than that with active flexibility.

1.
S.
Yang
,
J.
Qiu
, and
X.
Han
, “
Kinematics modeling and experiments of pectoral oscillation propulsion robotic fish
,”
J. Bionic Eng.
6
,
174
179
(
2009
).
2.
C.
Zhou
and
K. H.
Low
, “
Better endurance and load capacity: An improved design of manta ray robot (RoMan-II)
,”
J. Bionic Eng.
7
,
137
144
(
2010
).
3.
C.
Zhou
and
K. H.
Low
, “
Design and locomotion control of a biomimetic underwater vehicle with fin propulsion
,”
IEEE/ASME Trans. Mechatron.
17
,
25
35
(
2012
).
4.
M.
Asadnia
,
A. G. P.
Kottapalli
,
R.
Haghighi
,
A.
Cloitre
,
P. V.
Alvarado
,
J.
Miao
, and
M.
Triantafyllou
, “
MEMS sensors for assessing flow-related control of an underwater biomimetic robotic stingray
,”
Bioinspir. Biomim.
10
,
036008
(
2015
).
5.
H.
Ma
,
Y.
Cai
,
Y.
Wang
,
S.
Bi
, and
Z.
Gong
, “
A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral fins
,”
IR.
42
,
214
221
(
2015
).
6.
R.
Salazar
,
V.
Fuentes
, and
A.
Abdelkefi
, “
Classification of biological and bioinspired aquatic systems: A review
,”
Ocean Eng.
148
,
75
114
(
2018
).
7.
P. W.
Webb
, “
The biology of fish swimming
,” in
Mechanics and Physiology of Animal Swimming
, edited by
L.
Maddock
,
Q.
Bone
, and
J. M. V.
Rayner
(
Cambridge University Press
,
Cambridge, UK
,
1994
), pp.
45
62
.
8.
L. J.
Rosenberger
, “
Pectoral fin locomotion in batoid fishes: Undulation versus oscillation
,”
J. Exp. Biol.
204
,
379
394
(
2001
).
9.
L. J.
Rosenberger
and
M. W.
Westneat
, “
Functional morphology of undulatory pectoral fin locomotion in the stingray Taeniura lymma (Chondrichthyes: Dasyatidae)
,”
J. Exp. Biol.
202
,
3523
3394
(
1999
).
10.
M.
Sfakiotakis
,
D. M.
Lane
, and
J. B. C.
Davies
, “
Review of fish swimming modes for aquatic locomotion
,”
IEEE J. Oceanic Eng.
24
,
237
252
(
1999
).
11.
G. V.
Lauder
, “
Fish locomotion: Recent advances and new directions
,”
Annu. Rev. Mar. Sci.
7
,
521
545
(
2015
).
12.
A. J.
Smits
, “
Undulatory and oscillatory swimming
,”
J. Fluid Mech.
874
,
P1
(
2019
).
13.
J.
Gray
, “
Studies in animal locomotion
,”
J. Exp. Biol.
10
(
1
),
88
104
(
1933
).
14.
P. W.
Webb
, “
Form and function in fish swimming
,”
Sci. Am.
251
(
1
),
72
83
(
1984
).
15.
N.
Thekkethil
,
A.
Sharma
, and
A.
Agrawal
, “
Three-dimensional biological hydrodynamics study on various types of batoid fishlike locomotion
,”
Phys. Rev. Fluids
5
,
023101
(
2020
).
16.
R. C.
Mysa
and
P. V.
Alvarado
, “
The effect of batoid inspired undulating motions on the propulsive forces of a circular planform
,”
Phys. Fluids
33
,
061901
(
2021
).
17.
R. G.
Bottom
,
I.
Borazjani
,
E. L.
Blevins
, and
G. V.
Lauder
, “
Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex
,”
J. Fluid Mech.
788
,
407
443
(
2016
).
18.
G.
Su
,
N.
Li
,
H.
Shen
,
Y.
Su
,
Y.
Zhu
,
L.
Yu
, and
W.
Liu
, “
Swimming near substrates: Stingray self-propelled undulatory simulations
,”
Ocean Eng.
264
,
112495
(
2022
).
19.
Z.
Zhou
and
R.
Mittal
, “
Swimming performance and unique wake topology of the sea hare (Aplysia)
,”
Phys. Rev. Fluids
3
,
033102
(
2018
).
20.
C.
Heine
, “
Mechanics of flapping fin locomotion in the Cownose Ray, Rhinoptera bonasus (Elasmobranchii: Myliobatidae)
,” Ph.D. dissertation (
Duke University
,
Durham, NC, USA
,
1992
).
21.
D.
Zhang
,
Q. G.
Huang
,
G.
Pan
,
L. M.
Yang
, and
W. X.
Huang
, “
Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming
,”
J. Fluid Mech.
930
,
A28
(
2022
).
22.
R. P.
Clark
and
A. J.
Smits
, “
Thrust production and wake structure of a batoid-inspired oscillating fin
,”
J. Fluid Mech.
562
,
415
429
(
2006
).
23.
K. W.
Moored
,
W.
Smith
,
J. M.
Hester
,
W.
Chang
, and
H.
Bart-Smith
, “
Investigating the thrust production of a myliobatoid-inspired oscillating wing
,”
Adv. Sci. Technol.
58
,
25
30
(
2008
).
24.
F. E.
Fish
,
C. M.
Schreiber
,
K. W.
Moored
,
G.
Liu
,
H.
Dong
, and
H.
Bart-Smith
, “
Hydrodynamic performance of aquatic flapping: Efficiency of underwater flight in the manta
,”
Aerospace
3
,
20
24
(
2016
).
25.
Q.
Huang
,
D.
Zhang
, and
G.
Pan
, “
Computational model construction and analysis of the hydrodynamics of a Rhinoptera javanica
,”
IEEE Access
8
,
30410
30420
(
2020
).
26.
K. W.
Moored
, “
Unsteady three-dimensional boundary element method for self-propelled bio-inspired locomotion
,”
Comput. Fluids
167
,
324
340
(
2018
).
27.
K. W.
Moored
,
P. A.
Dewey
,
M. C.
Leftwich
,
H.
Bart-Smith
, and
A. J.
Smits
, “
Bioinspired propulsion mechanisms based on manta ray locomotion
,”
Mar. Technol. Soc. J.
45
,
110
118
(
2011
).
28.
G.
Shi
,
Q.
Xiao
, and
E.
Boulougouris
, “
Ground effects on the propulsion of an undulating pectoral fin with various aspect ratios
,”
J. Fluids Struct.
106
,
103388
(
2021
).
29.
G.
Shi
,
Q.
Xiao
,
Q.
Zhu
, and
W.
Liao
, “
Fluid-structure interaction modeling on a 3D ray-strengthened caudal fin
,”
Bioinspir. Biomim.
14
,
036012
(
2019
).
30.
Z.
Zhao
and
L.
Dou
, “
Computational research on a combined undulating-motion pattern considering undulations of both the ribbon fin and fish body
,”
Ocean Eng.
183
,
1
10
(
2019
).
31.
P.
Gao
,
Q.
Huang
,
G.
Pan
,
Y.
Ma
, and
D.
Song
, “
Research on the hydrodynamic performance of double manta ray gliding in groups with variable attack angles
,”
Phys. Fluids
34
,
111908
(
2022
).
32.
T.
Xu
,
Y.
Luo
,
Z.
Hou
,
Q.
Huang
,
Y.
Cao
, and
G.
Pan
, “
Research on passive deformation and hydrodynamic performance of a biomimetic cownose ray in gliding motion through fluid-structure interaction analysis
,”
Phys. Fluids
35
,
121905
(
2023
).
33.
Z.
Su
,
F.
Yu
,
B.
Zhu
,
W.
Han
,
Q.
Wang
, and
W.
Li
, “
Dynamic analysis of the sinusoidal actuation of a flexible fin for paired fin propulsion
,”
Phys. Fluids
34
,
051909
(
2022
).
34.
P.
Gao
,
Q.
Huang
,
G.
Pan
,
D.
Song
, and
Y.
Cao
, “
Research on swimming performance of fish in different species
,”
Phys. Fluids
35
,
061909
(
2023
).
35.
C.
Wei
,
Q.
Hu
,
S.
Li
,
T.
Zhang
, and
X.
Shi
, “
Hydrodynamic performance analysis of undulating fin propulsion
,”
Phys. Fluids
35
,
091906
(
2023
).
36.
W. X.
Huang
and
H. J.
Sung
, “
An immersed boundary method for fluid-flexible structure interaction
,”
Comput. Methods Appl. Mech. Eng.
198
,
2650
2661
(
2009
).
37.
W. X.
Huang
and
H. J.
Sung
, “
Three-dimensional simulation of a flapping flag in a uniform flow
,”
J. Fluid Mech.
653
,
301
336
(
2010
).
38.
K.
Kim
,
S. J.
Baek
, and
H. J.
Sung
, “
An implicit velocity decoupling procedure for incompressible Navier-Stokes equations
,”
Numer. Methods Fluids
38
,
125
138
(
2002
).
39.
J.
Gao
,
S.
Bi
,
Y.
Xu
, and
C.
Liu
, “
Development and design of a robotic manta ray featuring flexible pectoral fins
,” In
2007 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
2007
), pp.
519
523
.
40.
J.
Gao
,
S.
Bi
,
J.
Li
, and
C.
Liu
, “
Design and experiments of robot fish propelled by pectoral fins
,” In
2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
2009
), pp.
445
450
.
41.
C.
Niu
,
L.
Zhang
,
S.
Bi
, and
Y.
Cai
, “
Development and depth control of a robotic fish mimicking cownose ray
,” In
2012 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
2012
), pp.
814
818
.
42.
Z.
Wang
,
Y.
Wang
,
J.
Li
, and
G.
Hang
, “
A micro biomimetic manta ray robot fish actuated by SMA
,” In
2009 IEEE International Conference on Robotics and Biomimetics (ROBIO)
(
2009
), pp.
1809
1813
.
43.
J.
Ryu
,
S. G.
Park
,
W. X.
Huang
, and
H. J.
Sung
, “
Hydrodynamics of a three-dimensional self-propelled flexible plate
,”
Phys. Fluids
31
,
021902
(
2019
).
44.
J.
Zhao
,
Q.
Mao
,
G.
Pan
,
Q.
Huang
, and
H. J.
Sung
, “
Hydrodynamic benefit of cephalic fins in a self-propelled flexible manta ray
,”
Phys. Fluids
33
,
081906
(
2021
).
45.
J.
Zhao
,
Q.
Mao
,
G.
Pan
,
Q.
Huang
, and
H. J.
Sung
, “
Hydrodynamic benefit of impulsive bursting in a self-propelled flexible plate
,”
Phys. Fluids
33
,
111904
(
2021
).
46.
C.
Zhang
,
H.
Huang
, and
X. Y.
Lu
, “
Effect of trailing-edge shape on the self-propulsive performance of heaving flexible plates
,”
J. Fluid Mech.
887
,
A7
(
2020
).
47.
B.
Wu
,
C.
Shu
,
M.
Wan
,
Y.
Wang
, and
S.
Chen
, “
Hydrodynamic performance of an unconstrained flapping swimmer with flexible fin: A numerical study
,”
Phys. Fluids
34
,
011901
(
2022
).
48.
P.
Han
,
G. V.
Lauder
, and
H.
Dong
, “
Hydrodynamics of median-fin interactions in fish-like locomotion: Effects of fin shape and movement
,”
Phys. Fluids
32
,
011902
(
2020
).
49.
W.
Tong
,
Y.
Yang
, and
S.
Wang
, “
Characterizing three-dimensional features of vortex surfaces in the flow past a finite plate
,”
Phys. Fluids
32
,
011903
(
2020
).
50.
L.
Chen
,
C.
Zhou
, and
J.
Wu
, “
The role of effective angle of attack in hovering pitching-flapping-perturbed revolving wings at low Reynolds number
,”
Phys. Fluids
32
,
011906
(
2020
).
51.
Q.
Mao
,
J.
Zhao
,
Y.
Liu
, and
H. J.
Sung
, “
Hydrodynamic benefits of protruding eyes and mouth in a self-propelled flexible stingray
,”
Phys. Fluids
33
,
081915
(
2021
).
52.
T. L.
Daniel
, “
Unsteady aspects of aquatic locomotion
,”
Am. Zool.
24
,
121
134
(
1984
).
53.
N.
Thekkethil
,
A.
Sharma
, and
A.
Agrawal
, “
Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow
,”
Phys. Fluids
30
,
077107
(
2018
).
54.
S.
Ramananarivo
,
R.
Godoy-Diana
, and
B.
Thiria
, “
Rather than resonance, flapping wing flyers on aerodynamics to improve performance
,”
Proc. Natl. Acad. Sci. U. S. A.
108
,
5964
5969
(
2011
).
55.
X.
Zhu
,
G.
He
, and
X.
Zhang
, “
How flexibility affects the wake symmetry properties of a self-propelled plunging foil
,”
J. Fluid Mech.
751
,
164
183
(
2014
).
56.
X.
Zhu
,
G.
He
, and
X.
Zhang
, “
Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil
,”
Comput. Fluids
97
,
1
20
(
2014
).
57.
Z. R.
Peng
,
H.
Huang
, and
X. Y.
Lu
, “
Collective locomotion of two closely spaced self-propelled flapping plates
,”
J. Fluid Mech.
849
,
1068
1095
(
2018
).
58.
B.
Wu
,
C.
Shu
,
H.
Lee
, and
M.
Wan
, “
Numerical study on the hydrodynamic performance of an unconstrained carangiform swimmer
,”
Phys. Fluids
34
,
121902
(
2022
).
59.
D.
Zhang
,
G.
Pan
,
L.
Chao
, and
Y.
Zhang
, “
Effects of Reynolds number and thickness on an undulatory self-propelled foil
,”
Phys. Fluids
30
,
071902
(
2018
).
60.
D.
Zhang
,
J. D.
Zhang
, and
W. X.
Huang
, “
Physical models and vortex dynamics of swimming and flying: A review
,”
Acta Mech.
233
,
1249
1288
(
2022
).
61.
J. M.
Anderson
,
K.
Streitlien
,
D.
Barrett
, and
M. S.
Triantafyllou
, “
Oscillating foils of high propulsive efficiency
,”
J. Fluid Mech.
360
,
41
72
(
1998
).
62.
H.
Dong
,
R.
Mittal
, and
F.
Najjar
, “
Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils
,”
J. Fluid Mech.
566
,
309
343
(
2006
).
63.
D.
Zhang
and
W. X.
Huang
, “
Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148000
,”
J. Fluid Mech.
963
,
A16
(
2023
).
64.
B. S. H.
Connell
and
D. K. P.
Yue
, “
Flapping dynamics of a flag in a uniform stream
,”
J. Fluid Mech.
581
,
33
67
(
2007
).
You do not currently have access to this content.