A set of exact integrals of motion is found for systems driven by homogenous isotropic stochastic flow. The integrals of motion describe the evolution of (hyper-)surfaces of different dimensions transported by the flow and can be expressed in terms of local surface densities. The expression for the integrals is universal: it represents general geometric properties and does not depend on the statistics of the specific flow.

1.
Y. B.
Zel'dovich
,
S. A.
Molchanov
,
A. A.
Ruzmaikin
, and
D. D.
Sokolov
, “
Intermittency in random media
,”
Sov. Phys. Usp.
30
(
5
),
353
(
1987
).
2.
N. G.
Van Kampen
,
Stochastic Processes in Physics and Chemistry
(
Elsevier
,
Amsterdam
,
1992
).
3.
G. A.
Pavliotis
,
Stochastic Processes and Applications
(
Springer
,
New York, NY
,
2016
).
4.
J. P.
Sethna
,
Statistical Mechanics: Entropy, Order Parameters, and Complexity
(
Oxford University Press
,
Oxford
,
2021
).
5.
V. M.
Galfi
,
V.
Lucarini
,
F.
Ragone
, and
J.
Wouters
, “
Applications of large deviation theory in geophysical fluid dynamics and climate science
,”
La Rivista del Nuovo Cimento
44
(
6
),
291
363
(
2021
).
6.
V. M.
Galfi
and
V.
Lucarini
, “
Fingerprinting heatwaves and cold spells and assessing their response to climate change using large deviation theory
,”
Phys. Rev. Lett.
127
(
5
),
058701
(
2021
).
7.
A.
van Meegen
,
T.
Kuhn
, and
M.
Helias
, “
Large-deviation approach to random recurrent neuronal networks: Parameter inference and fluctuation-induced transitions
,”
Phys. Rev. Lett.
127
(
15
),
158302
(
2021
).
8.
H.
Seyedzadeh
,
W.
Oaks
,
J.
Craig
,
M.
Aksen
,
M. S.
Sanz
, and
A.
Khosronejad
, “
Lagrangian dynamics of particle transport in oral and nasal breathing
,”
Phys. Fluids
35
(
8
),
081903
(
2023
).
9.
V. A.
Sabelnikov
and
A. N.
Lipatnikov
, “
Recent advances in understanding of thermal expansion effects in premixed turbulent flames
,”
Ann. Rev. Fluid Mech.
49
,
91
117
(
2017
).
10.
C.
Savari
and
M.
Barigou
, “
Lagrangian wavelet analysis of turbulence modulation in particle–liquid mixing flows
,”
Phys. Fluids
34
(
11
),
115121
(
2022
).
11.
F. J.
Rincon
, “Dynamo theories,”
Plasma Phys.
85
(
4
),
205850401
(
2019
).
12.
A. V.
Kopyev
,
A. M.
Kiselev
,
A. S.
Il'yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Non-Gaussian generalization of the Kazantsev–Kraichnan model for a turbulent dynamo
,”
Astrophys. J.
927
(
2
),
172
(
2022
).
13.
A. V.
Kopyev
,
A. S.
Il'yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Suppression of small-scale dynamo in time-irreversible turbulence
,”
Mon. Not. R. Astron. Sos.
527
(
1
),
1055
1061
(
2024
).
14.
A.
Dembo
and
O.
Zeitouni
,
Large Deviations Techniques and Applications
(
Springer
,
Berlin, Heidelberg
,
2009
).
15.
H.
Touchette
, “
The large deviation approach to statistical mechanics
,”
Phys. Rep.
478
,
1
(
2009
).
16.
D.
Nickelsen
and
H.
Touchette
, “
Noise correction of large deviations with anomalous scaling
,”
Phys. Rev. E
105
(
6
),
064102
(
2022
).
17.
G.
Falkovich
and
A.
Frishman
, “
Single flow snapshot reveals the future and the past of Pairs of particles in turbulence
,”
Phys. Rev. Lett.
110
(
21
),
214502
(
2013
).
18.
Y. B.
Zel'dovich
,
A. A.
Ruzmaikin
,
S. A.
Molchanov
, and
D. D.
Sokoloff
, “
Kinematic dynamo problem in a linear velocity field
,”
J. Fluid Mech.
144
,
1
11
(
1984
).
19.
A. S.
Il'yn
,
A. V.
Kopyev
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Material surfaces in stochastic flows: Integrals of motion and intermittency
,”
Phys. Rev. E
107
(
2
),
L023101
(
2023
).
20.
F.
Toschi
and
E.
Bodenschatz
, “
Lagrangian properties of particles in turbulence
,”
Ann. Rev. Fluid Mech.
41
,
375
404
(
2009
).
21.
K. P.
Zybin
,
V. A.
Sirota
,
A. S.
Ilyin
, and
A. V.
Gurevich
, “
Lagrangian statistical theory of fully developed hydrodynamical turbulence
,”
Phys. Rev. Lett.
100
(
17
),
174504
(
2008
).
22.
R. H.
Kraichnan
, “
Small-scale structure of a scalar field convected by turbulence
,”
Phys. Fluids
11
(
5
),
945
953
(
1968
).
23.
G.
Falkovich
,
K.
Gawedzki
, and
M.
Vergassola
, “
Particles and fields in fluid turbulence
,”
Rev. Mod. Phys.
73
,
913
(
2001
).
24.
Y.
Qi
,
C.
Meneveau
,
G. A.
Voth
, and
R.
Ni
, “
Folding dynamics and its intermittency in turbulence
,”
Phys. Rev. Lett.
130
(
15
),
154001
(
2023
).
25.
H.
Yu
,
I.
Fouxon
,
J.
Wang
,
X.
Li
,
L.
Yuan
,
S.
Mao
, and
M.
Mond
, “
Lyapunov exponents and Lagrangian chaos suppression in compressible homogeneous isotropic turbulence
,”
Phys. Fluids
35
(
12
),
125114
(
2023
).
26.
L.
Bentkamp
,
T. D.
Drivas
,
C. C.
Lalescu
, and
M.
Wilczek
, “The statistical geometry of material loops in turbulence,”
Nat. Commun.
13
(
1
),
2088
(
2022
).
27.
R. H.
Kraichnan
, “
Anomalous scaling of a randomly advected passive scalar
,”
Phys. Rev. Lett.
72
(
7
),
1016
(
1994
).
28.
U.
Frisch
,
A.
Mazzino
, and
M.
Vergassola
, “
Intermittency in passive scalar advection
,”
Phys. Rev. Lett.
80
(
25
),
5532
(
1998
).
29.
E.
Balkovsky
and
A.
Fouxon
, “
Universal long-time properties of Lagrangian statistics in the Batchelor regime and their application to the passive scalar problem
,”
Phys. Rev. E
60
(
4
),
4164
(
1999
).
30.
K. P.
Zybin
and
V. A.
Sirota
, “
Lagrangian and Eulerian velocity structure functions in hydrodynamic turbulence
,”
Phys. Rev. Lett.
104
(
15
),
154501
(
2010
).
31.
F. R.
Gantmacher
,
The Theory of Matrices
(
Chelsea Publishing Company
,
New York
,
1960
).
32.
A. S.
Il'yn
,
A. V.
Kopyev
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Long-term properties of finite-correlation-time isotropic stochastic systems
,”
Phys. Rev. E
105
(
5
),
054130
(
2022
).
33.
A. S.
Il'yn
,
V. A.
Sirota
, and
K. P.
Zybin
, “
Statistical properties of the T-exponential of isotropically distributed random matrices
,”
J. Stat. Phys.
163
,
765
783
(
2016
).
34.
V. J.
Shinde
and
D. V.
Gaitonde
, “
Lagrangian approach for modal analysis of fluid flows
,”
J. Fluid Mech.
928
,
A35
(
2021
).
You do not currently have access to this content.