The atomization process of liquid fuels is vital in scramjet engines. The level of atomization directly impacts the subsequent evaporation, mixing, and combustion processes. Therefore, understanding the atomization mechanism of liquid jets in crossflow is necessary to promote the mixing process of scramjet engines and improve the combustion efficiency. This article overviews the atomization process of liquid jets in transverse airflow based on the breakup mechanism, atomization characteristics, and factors affecting atomization. The deformation and fragmentation of droplets are influenced primarily by the Weber number and have little correlation with the Reynolds number. There are similarities in the properties between the primary fragmentation of liquid jets and the breakup of liquid droplets in crossflow. The primary breakup of liquid jets in crossflow is characterized primarily by continuous jet column breakup. The Rayleigh–Taylor instability causes columnar breakup, while the Kelvin–Helmholtz instability causes surface breakup in the jet. The size distribution of droplets follows C-, I-, or S-shaped distributions, while the velocity distribution of droplets follows an inverse C-shape. Finally, the shortcomings of current research are pointed out, namely, the lack of research on the jet breakup mechanism in crossflow under actual scramjet engine configurations and inflow conditions. In the future, it can be combined with artificial intelligence to reveal the jet breakup mechanism under actual working conditions and establish a wide range of theoretical prediction models.

1.
M. J.
Lewis
, “
Global strike hypersonic weapons
,”
AIP Conf. Proc.
1898
(
1
),
020005
(
2017
).
2.
J.
Mcfarland
, “
The development of hypersonic weapons in the US, China and Russia: An incipient arms race
,”
Rusi J.
168
(
1
),
10
18
(
2023
).
3.
S. H.
Won
,
I.
Jeung
, and
J. Y.
Choi
, “
Overview on hypersonic scramjet engine developments
,”
J. Korean Soc. Propul. Eng.
9
(
1
),
67
83
(
2005
).
4.
Z. X.
Ren
,
B.
Wang
,
G. M.
Xiang
,
D.
Zhao
, and
L. X.
Zheng
, “
Supersonic spray combustion subject to scramjets: Progress and challenges
,”
Prog. Aerosp. Sci.
105
,
40
59
(
2019
).
5.
X. L.
Jiao
,
Z. Q.
Wang
, and
D. R.
Yu
, “
Predictor–corrector method for scramjet inlet air mass flow rate measurement
,”
AIAA J.
55
(
7
),
2382
2394
(
2017
).
6.
F. M. Rodriguez
Fuentes
and
B.
Parent
, “
Control of scramjet inlet recirculations using fuel injection
,”
AIAA J.
61
(
9
),
3775
3785
(
2023
).
7.
Y.
Cheng
,
Q.
Chen
,
X.
Niu
, and
S.
Cai
, “
Large eddy simulation and dynamic mode decomposition of supersonic combustion instability in a strut-based scramjet combustor
,”
Aerospace
10
,
857
(
2023
).
8.
Z.
Lv
and
J.
Xu
, “
Design method of a modular shape-transition nozzle for an axisymmetric scramjet-powered vehicle
,”
J. Aerosp. Eng.
36
(
4
),
04023028
(
2023
).
9.
S. I.
Baranovsky
and
J. A.
Schetz
, “
Effect of injection angle on liquid injection in supersonic flow
,”
AIAA J.
18
(
6
),
625
629
(
1980
).
10.
K. A.
Sallam
,
Z.
Dai
, and
G. M.
Faeth
, “
Drop formation at the surface of plane turbulent liquid jets in still gases
,”
Int. J. Multiphase Flow
25
(
6–7
),
1161
1180
(
1999
).
11.
W.
van Hoeve
,
S.
Gekle
,
J. H.
Snoeijer
,
M.
Versluis
,
M. P.
Brenner
, and
D.
Lohse
, “
Breakup of diminutive Rayleigh jets
,”
Phys. Fluids
22
(
12
),
122003
(
2010
).
12.
I. S.
Anufriev
,
E. Y.
Shadrin
,
E. P.
Kopyev
,
S. V.
Alekseenko
, and
O. V.
Sharypov
, “
Study of liquid hydrocarbons atomization by supersonic air or steam jet
,”
Appl. Therm. Eng.
163
,
114400
(
2019
).
13.
N.
Ashgriz
, “
Atomization of a liquid jet in a crossflow
,”
AIP Conf. Proc.
1440
,
33
46
(
2012
).
14.
N.
Fdida
,
N.
Mallart-Martinez
,
T.
Le Pichon
, and
A.
Vincent-Randonnier
, “
Penetration of a kerosene liquid jet injected in a high temperature Mach 2 supersonic crossflow
,”
Exp. Fluids
63
(
10
),
154
(
2022
).
15.
J.
Wen
,
Y.
Hu
,
A.
Nakanishi
, and
R.
Kurose
, “
Atomization and evaporation process of liquid fuel jets in crossflows: A numerical study using Eulerian/Lagrangian method
,”
Int. J. Multiphase Flow
129
,
103331
(
2020
).
16.
Y.
Meng
,
H.
Gu
, and
X.
Zhang
, “
Experimental study of kerosene ignition and flame stabilization in a supersonic combustor
,”
Int. J. Turbo Jet. Eng.
39
,
403
(
2022
).
17.
X.
Li
,
W.
Liu
,
Y.
Pan
,
L.
Yang
,
B.
An
, and
J.
Zhu
, “
Characterization of kerosene distribution around the ignition cavity in a scramjet combustor
,”
Acta Astronaut.
134
,
11
16
(
2017
).
18.
F.
Guangjun
,
Z.
Junlong
,
C.
Muxin
,
Q.
Hongchao
, and
B.
Wen
, “
Diffusion characteristics of liquid kerosene with heat transfer in a strut-equipped supersonic combustor
,”
Acta Astronaut.
203
,
246
251
(
2023
).
19.
F.
Li
,
P.
Li
,
X.
Liu
,
H.
Wang
,
M.
Sun
, and
Z.
Wang
, “
Numerical study on the mixing and combustion characteristics of a liquid kerosene jet in a scramjet combustor
,”
Aerosp. Sci. Technol.
139
,
108362
(
2023
).
20.
P.
Manna
,
R.
Behera
, and
D.
Chakraborty
, “
Liquid-fueled strut-based scramjet combustor design: A computational fluid dynamics approach
,”
J. Propul. Power
24
(
2
),
274
281
(
2008
).
21.
H.
Qiu
,
Z.
Kang
,
S.
Zhang
,
J.
Zhang
, and
W.
Bao
, “
Research on mixing and combustion characteristics of large aspect ratio supersonic combustor equipped with multi-strut
,”
Combust. Sci. Technol.
2023
,
1
24
.
22.
H.
Wei
, “
Transverse jet in supersonic crossflows
,”
Aerosp. Sci. Technol.
50
,
183
195
(
2016
).
23.
C.
Pu
,
G.
Guo
,
J.
Han
,
H.
Chen
,
P.
Xu
, and
C.
Zhang
, “
Influence of flow control schemes of the three-strut injector on the mixing efficiency and total pressure loss for a scramjet combustor
,”
Int. J. Hydrogen Energy
48
(
94
),
36972
36986
(
2023
).
24.
A.
Sekar
and
A.
Vaidyanathan
, “
Mixing enhancement of ethylene secondary jet injected into supersonic cross-flow using curved pylon
,”
Acta Astronaut.
210
,
253
267
(
2023
).
25.
K.
Yang
,
N.
Wang
,
Y.
Pan
,
Z. G.
Wang
,
C. Y.
Liu
, and
X. P.
Li
, “
Effect of cavity arrangement on the ignition mode of vaporized kerosene in supersonic flow
,”
Aerosp. Sci. Technol.
113
,
106691
(
2021
).
26.
S.
Heister
, “
Modeling primary atomization processes
,”
AIAA Paper No. 1998-3837
,
1998
.
27.
J. H.
Lee
,
K. C.
Lin
, and
D.
Eklund
, “
Challenges in fuel injection for high-speed propulsion systems
,”
AIAA J.
53
(
6
),
1405
1423
(
2015
).
28.
F.
Piscaglia
,
F.
Giussani
,
A.
Montorfano
,
J.
Hélie
, and
S. M.
Aithal
, “
A multiphase dynamic-VOF solver to model primary jet atomization and cavitation inside high-pressure fuel injectors in OpenFOAM
,”
Acta Astronaut.
158
,
375
387
(
2019
).
29.
C.
Bilger
and
R. S.
Cant
, “
Atomization and breakup of liquid kerosene at elevated pressure
,”
Atomization Sprays
28
(
12
),
1123
1144
(
2018
).
30.
C. Y.
Wei
,
J.
Drallmeier
, and
K.
Isaac
, “
Analysis of primary atomization in supersonic coaxial systems
,”
AIAA Paper No. 1992-3236
,
1992
.
31.
O.
Desjardins
,
J.
McCaslin
,
M.
Owkes
, and
P.
Brady
, “
Direct numerical and large-eddy simulation of primary atomization in complex geometries
,”
Atomization Sprays
23
(
11
),
1001
1048
(
2013
).
32.
T.
Hadi
,
S.
Anvari
, and
S. H.
Mousavi
, “
Assessment of varying primary/secondary break up mechanism of diesel spray on performance characteristics of HSDI engine
,”
Fuel
262
,
116622
(
2020
).
33.
K.
Ghate
,
G.
Muthuselvan
, and
T.
Sundararajan
, “
Modeling of primary and secondary atomization with simplex atomizers
,”
Multphase Sci. Technol.
32
(
3
),
237
258
(
2020
).
34.
B. E.
Gelfand
, “
Droplet break up phenomena in flows with velocity lag
,”
Prog. Energy Combust. Sci.
22
(
3
),
201
265
(
1996
).
35.
B.
Bhatia
,
T.
Johny
, and
A.
De
, “
Understanding the liquid jet break-up in various regimes at elevated pressure using a compressible VOF-LPT coupled framework
,”
Int. J. Multiphase Flow
159
,
104303
(
2023
).
36.
D.
Fuster
,
A.
Bagué
,
T.
Boeck
,
L.
Le Moyne
,
A.
Leboissetier
,
S.
Popinet
,
P.
Ray
,
R.
Scardovelli
, and
S.
Zaleski
, “
Simulation of primary atomization with an octree adaptive mesh refinement and VOF method
,”
Int. J. Multiphase Flow
35
(
6
),
550
565
(
2009
).
37.
M.
Vadivukkarasan
and
M. V.
Panchagnula
, “
Helical modes in combined Rayleigh–Taylor and Kelvin–Helmholtz instability of a cylindrical interface
,”
Int. J. Spray Combust. Dyn.
8
(
4
),
219
234
(
2016
).
38.
A.
Missoum
,
I.
Kakkattukuzhy
, and
J.
Drallmeier
, “
Atomization of liquid fuels in supersonic flow
,” AIAA Paper No. 1992-3235,
1992
.
39.
K.
Isaac
, “
Liquid jet atomization in supersonic flows
,” AIAA Paper No. 1990-2189,
1990
.
40.
Y.
Zhou
,
Z.
Cai
,
Q.
Li
,
C.
Li
,
M.
Sun
,
P.
Li
, and
H.
Wang
, “
Review of atomization mechanism and spray characteristics of a liquid jet in supersonic crossflow
,”
Chin. J. Aeronaut.
36
(
8
),
1
23
(
2023
).
41.
S.
Junji
, “
Recent advances in computational modeling of primary atomization of liquid fuel sprays
,”
Energies
11
,
2971
(
2018
).
42.
D.
Zhou
,
J.
Chang
,
C.
Tang
, and
L.
He
, “
Review on research progress in liquid jet in crossflow
,”
Int. Commun. Heat Mass Transfer
148
,
107003
(
2023
).
43.
V. M.
Boiko
,
A. Y.
Nesterov
, and
S. V.
Poplavski
, “
Liquid atomization in a high-speed coaxial gas jet
,”
Thermophys. Aeromech.
26
(
3
),
385
398
(
2019
).
44.
K.-C.
Lin
,
P.
Kennedy
, and
T.
Jackson
, “
Penetration heights of liquid jets in high-speed crossflows
,”
AIAA Paper No. 2002-0873
,
2002
.
45.
M. A.
Kolpin
,
K. P.
Horn
, and
R. E.
Reichenbach
, “
Study of penetration of a liquid injectant into a supersonic flow
,”
AIAA J.
6
(
5
),
853
858
(
1968
).
46.
F.
Xiao
,
M.
Dianat
, and
J. J.
McGuirk
, “
Large eddy simulation of liquid-jet primary breakup in air crossflow
,”
AIAA J.
51
(
12
),
2878
2893
(
2013
).
47.
K. C.
Lin
,
A. L.
Kastengren
,
S.
Hammack
, and
C.
Carter
, “
Exploration of water jets in supersonic crossflow using X-ray diagnostics
,”
Atomization Sprays
30
(
5
),
331
350
(
2020
).
48.
N.
Cao
,
Q.
Xu
,
J.
Ma
,
S.
Yang
,
C.
Han
, and
L.
Chen
, “
Experimental investigations on the spray macroscopic and microscopic characteristics in supersonic crossflows
,” in
Seventh Symposium on Novel Photoelectronic Detection Technology and Applications,
2021
.
49.
J. A.
Johnson
,
S.
Menon
, and
Y. C.
Mazumdar
, “
Digital holography for investigating front-edge instabilities of liquid jets in supersonic crossflows
,” AIAA Paper No. 2023-0804,
2023
.
50.
X. C.
Wu
,
Z. L.
Xue
,
H. F.
Zhao
,
L. C.
Yao
,
L. H.
Chen
,
C. H.
Zheng
, and
X.
Gao
, “
Measurement of slurry droplets by digital holographic microscopy: Fundamental research
,”
Fuel
158
,
697
704
(
2015
).
51.
J.
Becker
and
C.
Hassa
, “
Break up and atomization of a kerosene jet in crossflow at elevated pressure
,”
Atomization Sprays
12
(
1–3
),
49
68
(
2002
).
52.
N. S.
Rodrigues
,
V.
Kulkarni
,
J.
Gao
,
J.
Chen
, and
P. E.
Sojka
, “
An experimental and theoretical investigation of spray characteristics of impinging jets in impact wave regime
,”
Exp. Fluids
56
(
3
),
1
13
(
2015
).
53.
X. J.
Fan
,
C. X.
Liu
,
Y.
Mu
,
K. X.
Wang
,
Y. L.
Wang
, and
G.
Xu
, “
Experimental investigations of flow field and atomization field characteristics of pre-filming air-Blast Atomizers
,”
Energies
12
(
14
),
2800
2816
(
2019
).
54.
X.
Shengli
and
F.
Liseng
, “
Observation of kerosene injected from a cavity into a supersonic airstream
,”
Procedia Eng.
99
,
948
953
(
2015
).
55.
H.
Zhang
and
S.
Yang
, “
Numerical investigation of high-pressure transcritical shock-droplet interaction and mixing layer using VLE-based CFD accelerated by ISAT
,” AIAA Paper No. 2023-1857,
2023
.
56.
J. V. M.
Gopal
,
R.
Morgan
,
G.
de Sercey
,
G.
Tretola
, and
K.
Vogiatzaki
, “
Surface tension effects on cryogenic liquid injection dynamics in supercritical environment
,”
Phys. Fluids
35
(
9
),
093313
(
2023
).
57.
R.
Haghani
,
H.
Erfani
,
J. E.
McClure
, and
C. F.
Berg
, “
A note on the summation relation in phase-field equations
,”
Phys. Fluids
35
(
9
),
092112
(
2023
).
58.
V.
Rossano
,
A.
Cittadini
, and
G.
De Stefano
, “
Computational evaluation of shock wave interaction with a liquid droplet
,”
Appl. Sci.
12
(
3
),
1349
(
2022
).
59.
A. M.
Hess
,
D. A.
Kessler
, and
C.
Aguilera Munoz
, “
Numerical investigation of liquid droplet interactions with cylindrical bow shocks
,” AIAA Paper No. 2023-2302,
2023
.
60.
A. M.
Sharfuddin
and
F.
Ladeinde
, “
Level set modeling of three-dimensional supersonic liquid break up using the method of characteristics
,” AIAA Paper No. 2021-3629,
2021
.
61.
T.
Menard
,
P.-A.
Beau
,
S.
Tanguy
,
F.-X.
Demoulin
, and
A.
Berlemont
, “
Primary break-up: DNS of liquid jet to improve atomization modelling
,” in
Computational Methods in Multiphase Flow III
(
WIT Press
,
2005
), pp.
343
352
.
62.
J.
Shinjo
and
A.
Umemura
, “
Simulation of liquid jet primary break up: Dynamics of ligament and droplet formation
,”
Int. J. Multiphase Flow
36
(
7
),
513
532
(
2010
).
63.
F. J.
Salvador
,
J.-V.
Romero
,
M.-D.
Roselló
, and
D.
Jaramillo
, “
Numerical simulation of primary atomization in diesel spray at low injection pressure
,”
J. Comput. Appl. Math.
291
,
94
102
(
2016
).
64.
J. F.
Zhao
,
C. L.
Yang
,
L. Y.
Wu
,
W.
Lin
,
Y. H.
Tong
, and
W. S.
Nie
, “
Numerical simulation of single/double liquid jets in supersonic crossflows
,”
Aerosp. Sci. Technol.
120
,
107289
(
2022
).
65.
A. B.
Liu
,
D.
Mather
, and
R. D.
Reitz
, “
Modeling the effects of drop drag and breakup on fuel sprays
,”
SAE Tech. Paper
1993
,
930072
.
66.
Y. Y.
Niu
,
C. H.
Wu
,
Y. H.
Huang
,
Y. J.
Chou
, and
S. C.
Kong
, “
Evaluation of break up models for liquid side jets in supersonic cross flows
,”
Numer. Heat Transfer A
79
(
5
),
353
369
(
2021
).
67.
K.
Zhao
,
Z.
Xia
,
L.
Ma
,
Y.
Duan
,
J.
Zhang
,
Y.
Feng
,
B.
Cheng
, and
P.
Yang
, “
Large-eddy simulation of gas-particle two-phase jet into a supersonic crossflow
,”
Phys. Fluids
35
(
2
),
023310
(
2023
).
68.
M. S.
Almanzalawy
,
L. H.
Rabie
, and
M. H.
Mansour
, “
Modeling of an efficient airblast atomizer for liquid jet into a supersonic crossflow
,”
Acta Astronaut.
177
,
142
157
(
2020
).
69.
K. S.
Im
,
K. C.
Lin
, and
M. C.
Lai
, “
Spray atomization of liquid jet in supersonic cross flows
,”
AIAA Paper No. 2005-0732
,
2005
.
70.
K. S.
Im
,
K. C.
Lin
,
M. C.
Lai
, and
M. S.
Chon
, “
Break up modeling of a liquid jet in cross flow
,”
Int. J. Automot. Technol.
12
(
4
),
489
496
(
2011
).
71.
Y.-Q.
Wang
,
F.
Xiao
,
S.
Lin
, and
Y.-Z.
Zhou
, “
Numerical investigation of droplet properties of a liquid jet in supersonic crossflow
,”
Int. J. Aerosp. Eng.
2021
,
8828015
.
72.
J. H.
Park
,
Y.
Yoon
, and
S. M. S.
Hwang
, “
Improved TAB model for prediction of spray droplet deformation and break up
,”
Atomization Sprays
12
(
4
),
387
401
(
2002
).
73.
R. D.
Reitz
and
J. C.
Beale
, “
Modeling spray atomization with the Kelvin–Helmholtz/Rayleigh–Taylor hybrid model
,”
Atomization Sprays
9
(
6
),
623
650
(
1999
).
74.
Y.
Ling
,
S.
Zaleski
, and
R.
Scardovelli
, “
Multiscale simulation of atomization with small droplets represented by a Lagrangian point-particle model
,”
Int. J. Multiphase Flow
76
,
122
143
(
2015
).
75.
M.
Heinrich
and
R.
Schwarze
, “
3D-coupling of Volume-of-Fluid and Lagrangian particle tracking for spray atomization simulation in OpenFOAM
,”
SoftwareX
11
,
100483
(
2020
).
76.
J.
Zhao
,
W.
Lin
,
P.
Li
,
W.
Chu
,
Y.
Tong
, and
W.
Nie
, “
Simulation of a liquid jet in supersonic crossflow by a hybrid CLSVOF-LPT method
,”
Acta Astronaut.
183
,
23
28
(
2021
).
77.
A. K.
Flock
,
D. R.
Guildenbecher
,
J.
Chen
,
P. E.
Sojka
, and
H. J.
Bauer
, “
Experimental statistics of droplet trajectory and airflow during aerodynamic fragmentation of liquid drops
,”
Int. J. Multiphase Flow
47
,
37
49
(
2012
).
78.
R. K.
Madabhushi
, “
A model for numerical simulation of break up of a liquid jet in crossflow
,”
Atomization Sprays
13
(
4
),
413
424
(
2003
).
79.
M.
Pilch
and
C. A.
Erdman
, “
Use of break up time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
13
(
6
),
741
757
(
1987
).
80.
C.
Ortiz
,
D. D.
Joseph
, and
G. S.
Beavers
, “
Acceleration of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
30
(
2
),
217
224
(
2004
).
81.
G.
Brenn
and
M.
Stelter
, “
A generalized Ohnesorge nomogram for liquid jet breakup regimes
,”
Atomization Sprays
30
(
3
),
213
238
(
2020
).
82.
D. D.
Joseph
,
J.
Belanger
, and
G. S.
Beavers
, “
Breakup of a liquid drop suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
25
(
6–7
),
1263
1303
(
1999
).
83.
C. H.
Lee
and
R. D.
Reitz
, “
An experimental study of the effect of gas density on the distortion and break up mechanism of drops in high speed gas stream
,”
Int. J. Multiphase Flow
26
(
2
),
229
244
(
2000
).
84.
T. G.
Theofanous
,
G. J.
Li
, and
T. N.
Dinh
, “
Aerobreakup in rarefied supersonic gas flows
,”
J. Fluids Eng.
126
(
4
),
516
527
(
2004
).
85.
T. G.
Theofanous
and
G. J.
Li
, “
On the physics of aerobreakup
,”
Phys. Fluids
20
(
5
),
052103
(
2008
).
86.
T. G.
Theofanous
,
G. J.
Li
,
T. N.
Dinh
, and
C. H.
Chang
, “
Aerobreakup in disturbed subsonic and supersonic flow fields
,”
J. Fluid Mech.
593
,
131
170
(
2007
).
87.
T. G.
Theofanous
, “
Aerobreakup of Newtonian and viscoelastic liquids
,”
Annu. Rev. Fluid Mech.
43
(
1
),
661
690
(
2011
).
88.
T. G.
Theofanous
,
V. V.
Mitkin
,
C. L.
Ng
,
C.-H.
Chang
,
X.
Deng
, and
S.
Sushchikh
, “
The physics of aerobreakup. II. Viscous liquids
,”
Phys. Fluids
24
(
2
),
022104
(
2012
).
89.
T. G.
Theofanous
,
V. V.
Mitkin
, and
C. L.
Ng
, “
The physics of aerobreakup. III. Viscoelastic liquids
,”
Phys. Fluids
25
(
3
),
032101
(
2013
).
90.
D. R.
Guildenbecher
,
C.
López-Rivera
, and
P. E.
Sojka
, “
Secondary atomization
,”
Exp. Fluids
46
(
3
),
371
402
(
2009
).
91.
Z.
Wang
,
T.
Hopfes
,
M.
Giglmaier
, and
N. A.
Adams
, “
Effect of Mach number on droplet aerobreakup in shear stripping regime
,”
Exp. Fluids
61
(
9
),
193
(
2020
).
92.
K.
Mizuno
,
T.
Yada
,
T.
Kamiya
,
M.
Asahara
, and
T.
Miyasaka
, “
Deformation behavior of liquid droplet in shock-induced atomization
,”
Int. J. Multiphase Flow
155
,
104141
(
2022
).
93.
J.
Liu
and
X.
Xu
, “
Direct numerical simulation of secondary breakup of liquid drops
,”
Chin. J. Aeronaut.
23
(
2
),
153
161
(
2010
).
94.
S.
George
,
M.
Ilias
,
N.
Nikos
, and
G.
Manolis
, “
Aerodynamic break up of an n-decane droplet in a high temperature gas environment
,”
Fuel
185
,
370
380
(
2016
).
95.
S.
George
,
M.
Ilias
,
N.
Nikos
, and
G.
Manolis
, “
Numerical investigation of aerodynamic droplet break up in a high temperature gas environment
,”
Fuel
181
(
3
),
450
462
(
2016
).
96.
F.
Xiao
,
Z. G.
Wang
,
M. B.
Sun
,
N.
Liu
, and
X.
Yang
, “
Simulation of drop deformation and break up in supersonic flow
,”
Proc. Combust. Inst.
36
(
2
),
2417
2424
(
2017
).
97.
D. P.
Garrick
,
W. A.
Hagen
, and
J. D.
Regele
, “
Secondary atomization of liquid columns in compressible crossflows
,” arXiv:1906.04307 (
2019
).
98.
S.
Dionisis
,
K.
Phoevos
,
N.
Nikolaos
, and
G.
Manolis
, “
Numerical investigation of the aerodynamic droplet break up at Mach numbers greater than 1
,”
J. Energy Eng.
147
(
1
),
1
13
(
2021
).
99.
M.
Tripathi
and
P.
Khare
, “
Interactions between shock waves and liquid droplet clusters: Interfacial physics
,”
J. Fluids Eng.
144
(
10
),
101401
(
2022
).
100.
W.
Yang
,
M.
Jia
,
K.
Sun
, and
T. Y.
Wang
, “
Influence of density ratio on the secondary atomization of liquid droplets under highly unstable conditions
,”
Fuel
174
,
25
35
(
2016
).
101.
A.
Mashayek
,
A.
Jafari
, and
N.
Ashgriz
, “
Improved model for the penetration of liquid jets in subsonic crossflows
,”
AIAA J.
46
(
11
),
2674
2686
(
2008
).
102.
D.-G.
Yun
,
Y.-L.
Yoo
, and
J.-S.
Kang
, “
Numerical simulations on a liquid jet in supersonic crossflow using a homogeneous mixture model with AMR
,” AIAA Paper No. 2023-3041,
2023
.
103.
O. G.
Girin
, “
Model of the fuel jet primary atomization and aerodynamics of spray formation at high-pressure injection in a diesel engine
,”
Atomiz. Sprays
28
(
3
),
195
216
(
2018
).
104.
A.
Sherman
and
J.
Schetz
, “
Breakup of liquid sheets and jets in a supersonic gas stream
,”
AIAA J.
9
(
4
),
666
673
(
1971
).
105.
K. A.
Sallam
,
C.
Aalburg
, and
G. M.
Faeth
, “
Breakup of round nonturbulent liquid jets in gaseous crossflow
,”
AIAA J.
42
(
12
),
2529
2540
(
2004
).
106.
M.
Behzad
,
N.
Ashgriz
, and
B. W.
Karney
, “
Surface break up of a nonturbulent liquid jet injected into a high pressure gaseous crossflow
,”
Int. J. Multiphase Flow
80
,
100
117
(
2016
).
107.
B. A.
de Freitas Duarte
,
F.
Barbi
,
M. M.
Villar
,
R.
Serfaty
, and
A.
da Silveira Neto
, “
Primary atomization of a turbulent liquid jet in crossflow: A comparison between VOF and FGVT methods
,”
J. Braz. Soc. Mech. Sci. Eng.
42
(
6
),
277
(
2020
).
108.
F.
Xiao
and
M. B.
Sun
, “
Effects of Mach number on liquid jet primary breakup in gas crossflow
,”
Atomization Sprays
28
(
11
),
975
999
(
2018
).
109.
P.
Moin
and
S. V.
Apte
, “
Large-eddy simulation of realistic gas turbine combustors
,”
AIAA J.
44
(
4
),
698
708
(
2006
).
110.
M. B.
Kuhn
and
O.
Desjardins
, “
Experimentally validated high-fidelity simulations of a liquid jet in supersonic crossflow
,”
Int. J. Multiphase Flow
156
,
104195
(
2022
).
111.
H.
Junkai
,
Z.
Xin
, and
J.
Hao
, “
Numerical simulation of the atomization of liquid transverse jet in supersonic airflow
,”
Phys. Fluids
33
(
5
),
052114
(
2021
).
112.
A.
Mashayek
and
N.
Ashgriz
, “
Model for deformation of drops and liquid jets in gaseous crossflows
,”
AIAA J.
47
(
2
),
303
313
(
2009
).
113.
A.
Mashayek
,
M.
Behzad
, and
N.
Ashgriz
, “
Multiple injector model for primary breakup of a liquid jet in crossflow
,”
AIAA J.
49
(
11
),
2407
2420
(
2011
).
114.
K.
Lee
,
C.
Aalburg
,
F. J.
Diez
,
G. M.
Faeth
, and
K. A.
Sallam
, “
Primary breakup of turbulent round liquid jets in uniform crossflows
,”
AIAA J.
45
(
8
),
1907
1916
(
2007
).
115.
A. R.
Osta
and
K. A.
Sallam
, “
Nozzle-geometry effects on upwind-surface properties of turbulent liquid jets in gaseous crossflow
,”
J. Propul. Power
26
(
5
),
936
946
(
2010
).
116.
Y. Z.
Zhou
,
F.
Xiao
,
Q. L.
Li
, and
C. Y.
Li
, “
Simulation of elliptical liquid jet primary breakup in supersonic crossflow
,”
Int. J. Aerosp. Eng.
2020
,
6783038
.
117.
G.
Yogish
,
Break up Characteristics of a Liquid Jet in Subsonic Crossflow
(
Georgia Institute of Technology
,
2012
).
118.
M. R.
Morad
and
H.
Khosrobeygi
, “
Penetration of elliptical liquid jets in low-speed crossflow
,”
J. Fluids Eng.
141
(
1
),
011301
(
2019
).
119.
B.
Jalili
and
P.
Jalili
, “
Numerical analysis of airflow turbulence intensity effect on liquid jet trajectory and break up in two-phase cross flow
,”
Alexandria Eng. J.
68
,
577
585
(
2023
).
120.
Z. B.
Du
,
W.
Huang
,
L.
Yan
,
L. Q.
Li
,
Z.
Chen
, and
S. B.
Li
, “
RANS study of steady and pulsed gaseous jets into a supersonic crossflow
,”
Int. J. Heat Mass Transfer
136
,
157
169
(
2019
).
121.
M.
Yan
,
Y.
Tian
,
G.
Wang
, and
J. L.
Le
, “
Effects of pulsed hydrogen injection on mixing and combustion performance in a supersonic flow field
,”
Phys. Fluids
35
(
10
),
105103
(
2023
).
122.
J.
Chang
,
L.
He
,
L.
Chen
, and
Z.
Li
, “
Atomization of liquid pulsed jet in subsonic crossflow
,”
AIP Adv.
13
,
055117
(
2023
).
123.
Y. H.
Zhu
,
F.
Xiao
,
Q. L.
Li
,
R.
Mo
,
C.
Li
, and
S.
Lin
, “
LES of primary break up of pulsed liquid jet in supersonic crossflow
,”
Acta Astronaut.
154
,
119
132
(
2019
).
124.
W.
Zhou
,
B.
Chen
,
Q.
Zhu
,
S.
Rao
, and
X.
Xu
, “
Numerical simulation of angled-injected liquid jet break up in supersonic crossflow by a hybrid VOF-LPT method
,”
Int. J. Multiphase Flow
166
,
104503
(
2023
).
125.
A.
Edward
,
J. R.
Kush
, and
J. A.
Schetz
, “
Liquid jet injection into a supersonic flow
,”
AIAA J.
11
(
9
),
1223
1224
(
1973
).
126.
L.
Fei
,
S.
Xu
,
C. J.
Wang
,
Q.
Li
, and
S.
Huang
, “
Experimental study on atomization phenomena of kerosene in supersonic cold flow
,”
Sci. China Ser. E: Technol. Sci.
51
(
2
),
145
152
(
2008
).
127.
J.
Chang
,
L.
He
,
L.
Chen
,
Z.
Shen
,
L. F.
Chuah
,
A.
Bokhari
,
J. J.
Klemeš
, and
N.
Han
, “
Numerical simulation of liquid jet atomization in subsonic crossflow
,”
Energy
257
,
124676
(
2022
).
128.
X.
Li
and
M. C.
Soteriou
, “
Impact of density ratio on liquid jet in crossflow atomization investigated using high fidelity simulation
,”
AIAA Paper No. 2017-1703
,
2017
.
129.
M.
Hashemi
,
S.
Shalbaf
,
M.
Jadidi
, and
A.
Dolatabadi
, “
Effects of gas viscosity and liquid-to-gas density ratio on liquid jet atomization in crossflow
,”
AIP Adv.
13
(
3
),
035105
(
2023
).
130.
M.
Jadidi
,
S.
Moghtadernejad
, and
A.
Dolatabadi
, “
Numerical simulation of primary breakup of round nonturbulent liquid jets in shear-laden gaseous crossflow
,”
Atomization Sprays
27
(
3
),
227
250
(
2017
).
131.
H.
Almeida
,
J. M. M.
Sousa
, and
M.
Costa
, “
Effect of the liquid injection angle on the atomization of liquid jets in subsonic crossflows
,”
Atomization Sprays
24
(
1
),
81
96
(
2014
).
132.
D.
Masutti
,
S.
Bernhardt
,
C.
Asma
, and
M. R.
Vetrano
, “
Experimental characterization of liquid jet atomization in Mach 6 crossflow
,”
AIAA Paper No. 2009-4220
,
2009
.
133.
L. Y.
Wu
,
Z. G.
Wang
,
Q. L.
Li
, and
J. Q.
Zhang
, “
Investigations on the droplet distributions in the atomization of kerosene jets in supersonic crossflows
,”
Appl. Phys. Lett.
107
(
10
),
104103
(
2015
).
134.
P. B.
Li
,
Z. G.
Wang
,
M. B.
Sun
, and
H. B.
Wang
, “
Numerical simulation of the gas-liquid interaction of a liquid jet in supersonic crossflow
,”
Acta Astronaut.
134
,
333
344
(
2017
).
135.
P. B.
Li
,
Z. G.
Wang
,
X. S.
Bai
,
H. B.
Wang
,
M. B.
Sun
,
L. Y.
Wu
, and
C. Y.
Liu
, “
Three-dimensional flow structures and droplet-gas mixing process of a liquid jet in supersonic crossflow
,”
Aerosp. Sci. Technol.
90
,
140
156
(
2019
).
136.
Y.
Su
,
H. F.
Yuan
, and
Y. P.
Su
, “
Liquid-fuel injection into supersonic cross flow
,”
Combust. Sci. Technol.
192
(
7
),
1436
1447
(
2020
).
137.
C. Y.
Li
,
Y. Z.
Zhou
,
H. Y.
Chen
, and
Q. L.
Li
, “
Cross-sectional droplets distribution of a liquid jet in supersonic crossflow
,”
Acta Astronaut.
186
,
109
117
(
2021
).
138.
C. Y.
Li
,
C.
Li
,
X.
Feng
,
Q. L.
Li
, and
Y. H.
Zhu
, “
Experimental study of spray characteristics of liquid jets in supersonic crossflow
,”
Aerosp. Sci. Technol.
95
,
105426
(
2019
).
139.
C. Y.
Li
,
P. B.
Li
,
C.
Li
,
Q. L.
Li
, and
Y. Z.
Zhou
, “
Experimental and numerical investigation of cross-sectional structures of liquid jets in supersonic crossflow
,”
Aerosp. Sci. Technol.
103
,
105926
(
2020
).
140.
P. B.
Li
,
H. B.
Wang
,
M. B.
Sun
,
C. Y.
Liu
, and
F.
Li
, “
Numerical study on the mixing and evaporation process of a liquid kerosene jet in a scramjet combustor
,”
Aerosp. Sci. Technol.
119
(
1
),
107095
(
2021
).
141.
J.
Zhao
,
Y. J.
Ren
,
Y.
Tong
,
W.
Lin
, and
W.
Nie
, “
Atomization of a liquid jet in supersonic crossflow in a combustion chamber with an expanded section
,”
Acta Astronaut.
180
,
35
45
(
2021
).
142.
C.
Medipati
,
S.
Deivandren
, and
R. N.
Govardhan
, “
Liquid jet injection in supersonic crossflow: Self-induced jet oscillations and its effects
,”
Int. J Multiphase Flow
158
,
104265
(
2023
).
143.
K. C.
Lin
,
P.
Kennedy
, and
T.
Jackson
, “
Structures of water jets in a Mach 1.94 supersonic crossflow
,”
AIAA Paper No. 2004-0971
,
2004
.
144.
S. Y.
No
, “
A review on empirical correlations for jet/spray trajectory of liquid jet in uniform cross flow
,”
Int. J. Spray Combust. Dyn.
7
(
4
),
283
314
(
2015
).
145.
A. S.
Nejad
and
J. A.
Schetz
, “
Effects of properties and location in the plume on droplet diameter for injection in a supersonic stream
,”
AIAA J.
21
(
7
),
956
961
(
1983
).
146.
V.
Viti
,
R.
Neel
, and
J. A.
Schetz
, “
Detailed flow physics of the supersonic jet interaction flow field
,”
Phys. Fluids
21
(
4
),
046101
(
2009
).
147.
K.
Kumaran
and
V.
Babu
, “
Mixing and combustion characteristics of kerosene in a model supersonic combustor
,”
J. Propul. Power
25
(
3
),
583
592
(
2009
).
148.
J.
Beloki Perurena
,
C. O.
Asma
,
R.
Theunissen
, and
O.
Chazot
, “
Experimental investigation of liquid jet injection into Mach 6 hypersonic crossflow
,”
Exp. Fluids
46
(
3
),
403
417
(
2009
).
149.
S. H.
Yu
,
B. F.
Yin
,
Q. S.
Bi
,
H. K.
Jia
, and
C.
Chen
, “
The influence of elliptical and circular orifices on the transverse jet characteristics at supersonic crossflow
,”
Acta Astronaut.
185
,
124
131
(
2021
).
150.
M.
Costa
,
M. J.
Melo
,
J. M. M.
Sousa
, and
Y.
Levy
, “
Spray characteristics of angled liquid injection into subsonic crossflows
,”
AIAA J.
44
(
3
),
646
653
(
2006
).
151.
L.
Zhu
,
F.
Luo
,
Y. Y.
Qi
,
M.
Wei
,
J. R.
Ge
,
W. L.
Liu
,
G. L.
Li
, and
T. C.
Jen
, “
Effects of spray angle variation on mixing in a cold supersonic combustor with kerosene fuel
,”
Acta Astronaut.
144
,
1
11
(
2018
).
152.
T. W.
Lee
,
J. E.
Park
,
H.
Bellerova
,
M.
Hnizdl
, and
M.
Raudensky
, “
Momentum analyses for determination of drop size and distributions during spray atomization
,”
Atomization Sprays
30
(
2
),
97
109
(
2020
).
153.
T. W.
Lee
,
B.
Greenlee
,
J. E.
Park
,
H.
Bellerova
, and
M.
Raudensky
, “
A computational protocol for simulation of liquid jets in crossflows with atomization
,”
Atomization Sprays
30
(
5
),
319
330
(
2020
).
154.
X.
Wei
,
L.
Li
,
Z.
Zhao
,
T.
Bo
,
X.
Bian
, and
Y.
Zuo
, “
The droplet size and penetration height of a kerosene jet in a crossflow
,”
Atomization Sprays
30
(
7
),
495
515
(
2020
).
155.
J.
Zhao
,
Y.
Tong
,
Y.
Ren
,
Y.
Zhu
,
Z.
Chen
,
W.
Lin
, and
W.
Nie
, “
Structures of liquid jets in supersonic crossflows in a rectangular channel with an expansion section
,”
Phys. Fluids
32
(
11
),
111704
(
2020
).
156.
F.
Li
,
T.
Wang
,
K.
Yang
,
J.
Zhang
,
H.
Wang
,
M.
Sun
,
Z.
Wang
, and
P.
Li
, “
Effect of fuel temperature on mixing characteristics of a kerosene jet injected into a cavity-based supersonic combustor
,”
Phys. Fluids
35
(
4
),
043307
(
2023
).
157.
W.
Zhou
,
K.
Xing
,
S.
Dou
,
Q.
Yang
, and
X.
Xu
, “
Distribution characteristics of a supercritical hydrocarbon fuel jet injected into a high-speed crossflow
,”
Fuel
333
,
126497
(
2023
).
158.
J. K.
Huang
and
X.
Zhao
, “
Numerical simulations of atomization and evaporation in liquid jet flows
,”
Int. J. Multiphase Flow
119
,
180
193
(
2019
).
159.
S.
Zou
,
D.
Zhou
, and
S.
Yang
, “
Effects of evaporation and fuel properties on liquid jets in supersonic crossflow: A computational study using a compressible Eulerian–Lagrangian solver
,”
Atomization Sprays
30
(
9
),
675
696
(
2020
).
160.
H.
Khaleghi
,
H. F.
Farani Sani
,
M.
Ahmadi
, and
F.
Mohammadzadeh
, “
Effects of Turbulence on the secondary break up of droplets in diesel fuel sprays
,”
Proc. Inst. Mech. Eng. D
235
(
2–3
),
387
399
(
2021
).
161.
B. J.
Hwang
,
H.
Choi
, and
S.
Min
, “
An experimental study on penetration and mixing characteristics of liquid fuel in preheated supersonic airflows
,”
Acta Astronaut.
202
,
511
521
(
2023
).
162.
B. J.
Hwang
and
S.
Min
, “
Numerical investigation of the effect of supersonic air temperature on the mixing characteristics of liquid fuel
,”
Energies
16
(
1
),
496
(
2023
).
163.
G.
Feng
,
J.
Zhang
,
M.
Chen
,
J.
Gao
, and
W.
Bao
, “
Mathematical representation of liquid jet diffusion characteristics effected with evaporation process in supersonic crossflow
,”
Fuel
353
,
129110
(
2023
).
164.
N.
Abani
,
A.
Munnannur
, and
R. D.
Reitz
, “
Reduction of numerical parameter dependencies in diesel spray models
,”
J. Eng. Gas Turbines Power
130
(
3
),
032809
(
2008
).
165.
X. F.
Fan
,
J. F.
Wang
,
F. M.
Zhao
,
J. W.
Li
, and
T. P.
Yang
, “
Eulerian–Lagrangian method for liquid jet atomization in supersonic crossflow using statistical injection model
,”
Adv. Mech. Eng.
10
(
2
),
168781401876129
(
2018
).
166.
J. T.
Guerra
,
J. R.
Edwards
, and
K.-C.
Lin
, “
Improved Eulerian/Lagrangian modeling of liquid jet injection into a supersonic crossflow
,” AIAA Paper No. 2022-1851,
2022
.
167.
C. W.
Tsang
and
C. J.
Rutland
, “
Effects of fuel physical properties and break up model constants on large-eddy simulation of diesel sprays
,” in
Internal Combustion Engine Division Fall Technical Conference
(
ASME
,
2015
).
168.
Q.
Gao
,
H.
Wang
, and
G.
Shen
, “
Review on development of volumetric particle image velocimetry
,”
Chin. Sci. Bull.
58
(
36
),
4541
4556
(
2013
).
169.
C.
Smith
,
M.
Gragston
,
Y.
Wu
, and
Z.
Zhang
, “
Experimental characterization of two-phase aerated liquid ethanol and jet A spray flames
,”
Appl. Sci.
10
(
19
),
6950
(
2020
).
170.
M.
Barzegar Gerdroodbary
,
M.
Rahimi Takami
,
H. R.
Heidari
,
K.
Fallah
, and
D. D.
Ganji
, “
Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow
,”
Acta Astronaut.
123
,
283
291
(
2016
).
171.
Z.
Ren
,
B.
Wang
, and
L.
Zheng
, “
Numerical analysis on interactions of vortex, shock wave, and exothermal reaction in a supersonic planar shear layer laden with droplets
,”
Phys. Fluids
30
,
036101
(
2018
).
172.
F.
Utheza
,
R.
Saurel
,
E.
Daniel
, and
J. C.
Loraud
, “
Droplet break-up through an oblique shock wave
,”
Shock Waves
5
(
5
),
265
273
(
1996
).
173.
H.
Jones
and
S.
Menon
, “
Liquid jet penetration and break up in a free supersonic gas jet
,”
Exp. Fluids
60
(
11
),
161
(
2019
).
174.
K. C.
Lin
and
P.
Kennedy
, “
Spray penetration heights of angle-injected aerated-liquid jets in supersonic crossflows
,”
AIAA Paper No. 2000-0194
,
2000
.
175.
G.
Yu
,
J. G.
Li
,
S. R.
Yang
,
L. J.
Yue
,
X. Y.
Zhang
,
Y.
Huang
, and
C. J.
Sung
, “
Investigation of liquid hydrocarbon combustion in supersonic flows using effervescent atomization
,”
AIAA Paper No. 2002-4279
,
2002
.
176.
G.
Yu
,
J. G.
Li
,
J. R.
Zhao
,
L. J.
Yue
,
X. Y.
Chang
, and
C. J.
Sung
, “
An experimental study of kerosene combustion in a supersonic model combustor using effervescent atomization
,”
Proc. Combust. Inst.
30
(
2
),
2859
2866
(
2005
).
177.
C.
Ghenai
,
H.
Sapmaz
, and
C.
Lin
, “
Penetration height correlations for non-aerated and aerated transverse liquid jets in supersonic cross flow
,”
Exp. Fluids
46
(
1
),
121
129
(
2009
).
178.
U.
András
,
Z.
Matouš
,
M.
Milan
,
J.
Viktor
, and
J.
Jan
, “
Droplet dynamics and size characterization of high-velocity airblast atomization
,”
Int. J. Multiphase Flow
95
,
1
11
(
2017
).
179.
T.
Tidball
,
K. C.
Lin
,
S.
Hammack
, and
T.
Ombrello
, “
Structures of diesel with dissolved gas in supersonic crossflow
,” AIAA Paper No. 2021-0753,
2021
.
180.
S.
Shaghaghian
,
M.
Jadidi
,
A.
Akbarnozari
, and
A.
Dolatabadi
, “
Aerated circular and elliptical liquid jets in a gaseous crossflow
,”
Atomization Sprays
33
(
1
),
43
68
(
2023
).
181.
C.
Chen
,
X. F.
Gong
,
Y. F.
Wang
, and
X. J.
He
, “
The effect of ambient pressure and gas-liquid ratio on the spray characteristics of an effervescent atomizer
,”
Int. J. Aeronaut. Space Sci.
25
,
154
(
2024
).
182.
J. T.
Guerra
,
J. R.
Edwards
, and
K. C.
Lin
, “
Droplet vaporization and secondary break up effects in aerated-liquid injection into a supersonic crossflow
,” AIAA Paper No. 2021-0080,
2021
.
183.
R.
Hu
,
Q.
Li
,
C.
Li
, and
C.
Li
, “
Effects of an accompanied gas jet on transverse liquid injection in a supersonic crossflow
,”
Acta Astronaut.
159
,
440
451
(
2019
).
184.
P.
Hewitt
and
J. A.
Schetz
, “
Atomization of impinging liquid jets in a supersonic crossflow
,”
AIAA J.
21
(
2
),
178
179
(
1983
).
185.
I. C.
Lee
,
Y. S.
Kang
,
H. J.
Moon
,
S. P.
Jang
,
J. K.
Kim
, and
J.
Koo
, “
Spray jet penetration and distribution of modulated liquid jets in subsonic cross-flows
,”
J. Mech. Sci. Technol.
24
(
7
),
1425
1431
(
2010
).
186.
B.
Steinfurth
and
J.
Weiss
, “
Efficiency enhancement in active separation control through optimizing the duty cycle of pulsed jets
,”
AIAA J.
60
(
12
),
6566
6580
(
2022
).
187.
T. L.
Pham
and
S. D.
Heister
, “
Spray modeling using Lagrangian droplet tracking in a homogeneous flow model
,”
Atomization Sprays
12
(
5–6
),
687
708
(
2002
).
188.
K. C.
Lin
,
M. C.
Lai
,
T.
Ombrello
, and
C. D.
Carter
, “
Structures and temporal evolution of liquid jets in supersonic crossflow
,” AIAA Paper No. 2017-1958,
2017
.
189.
K.
Sathiyamoorthy
,
T. H.
Danish
,
V. S.
Iyengar
,
J.
Srinivas
,
X.
Harikrishna
,
T. M.
Muruganandam
, and
S. R.
Chakravarthy
, “
Penetration and combustion studies of tandem liquid jets in supersonic crossflow
,”
J. Propul. Power
36
(
6
),
920
930
(
2020
).
190.
K. Y.
Arefyev
,
O. V.
Guskov
,
A. N.
Prokhorov
,
A. S.
Saveliev
,
E. E.
Son
,
K.
Gautham
,
D.
Sam
,
K. T.
Sonu
, and
T. M.
Muruganandam
, “
Experimental research of gasdynamic liquid drops break up in the supersonic flow with an oblique shock wave
,”
High Temp.
58
(
6
),
884
892
(
2020
).
191.
Y.
Zhao
,
J.
Wu
, and
X.
Mu
, “
Atomization characteristics of kerosene in crossflow with an incident shock wave
,”
Aerospace
10
(
1
),
30
(
2022
).
192.
D. S.
Sebastian
,
S. K.
Thomas
, and
T. M.
Muruganandam
, “
Gas dynamic effect of shock interaction with liquid jet in supersonic crossflow
,” AIAA Paper No. 2022-2072,
2022
.
You do not currently have access to this content.