Fluid–structure interaction (FSI) is a nonlinear multiphysics phenomenon that describes the interactions between incompressible fluid flows and immersed structures, making it invaluable to biomedical research. In this work, the common FSI methodologies in biomedical research were systematically summarized and classified into three groups based on FSI interfaces: fluid–channel interfaces, fluid–particle interfaces, and multi-interface interactions. A discussion of the role of the numerical FSI methods was also made, outlining its indispensable advantage in handling complex geometries, boundary conditions, and thus FSI interfaces. The applications of these methods are discussed in terms of blood vessel-related applications, drug-delivering micropumps, particle dynamics/cell sorting, and particle deformation and rapture. The development progress, current advances, and prospects of FSI's future application in biomedical research were illustrated. It was concluded that with the advances in computation technologies, the rapidly developing FSI methods can achieve state-of-the-art level details, helping to improve our understanding of various biomedical-related problems and the use of FSI techniques in biomedical research is likely to continue to grow.

1.
T.
Bodnár
,
G. P.
Galdi
, and
S.
Necasova
,
Fluid Structure Interaction and Biomedical Applications
(
Springer
,
2014
).
2.
D. S.
Molony
,
A.
Callanan
,
E. G.
Kavanagh
,
M. T.
Walsh
, and
T. M.
McGloughlin
, “
Fluid–structure interaction of a patient-specific abdominal aortic aneurysm treated with an endovascular stent-graft
,”
BioMed. Eng.
8
(
1
),
24
(
2009
).
3.
Y.
Zhang
,
Y.
Xu
,
H.
Kong
,
J.
Zhang
,
H. F.
Chan
,
J.
Wang
,
D.
Shao
,
Y.
Tao
, and
M.
Li
, “
Microneedle system for tissue engineering and regenerative medicine
,”
Exploration
3
,
20210170
(
2023
).
4.
J. A.
Taren
, “
Cerebral aneurysm
,”
Am. J. Nurs.
65
,
88
91
(
1965
).
5.
Y.
Xu
,
H.
Zhu
,
Y.
Shen
,
A. P. M.
Guttenplan
,
K. L.
Saar
,
Y.
Lu
,
D.
Vigolo
,
L. S.
Itzhaki
, and
T. P. J.
Knowles
, “
Micromechanics of soft materials using microfluidics
,”
MRS Bull.
47
(
2
),
119
126
(
2022
).
6.
J.
Cui
,
H. P.
Wang
,
Q.
Shi
, and
T.
Sun
, “
Pulsed microfluid force-based on-chip modular fabrication for liver lobule-like 3D cellular models
,”
Cyborg Bionic Syst.
2021
,
9871396
.
7.
Z.
Jia
,
J.
Wu
,
X.
Wu
,
Q.
Yuan
,
Y.
Chan
,
B.
Liu
,
J.
Zhang
, and
S.
Yan
, “
Size-tunable elasto-inertial sorting of Haematococcus pluvialis in the ultra-stretchable microchannel
,”
Anal. Chem.
95
,
13338
(
2023
).
8.
E.
Ye
,
P. L.
Chee
,
A.
Prasad
,
X.
Fang
,
C.
Owh
,
V. J. J.
Yeo
, and
X. J.
Loh
, “
Supramolecular soft biomaterials for biomedical applications
,” in
In-Situ Gelling Polymers
(
Springer
,
2015
), pp.
107
125
.
9.
W.
Hofmann
, “
Modelling inhaled particle deposition in the human lung—A review
,”
J. Aerosol. Sci.
42
(
10
),
693
724
(
2011
).
10.
J.-R.
Choi
,
H.
Song
,
J. H.
Sung
,
D.
Kim
, and
K.
Kim
, “
Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress
,”
Biosens. Bioelectron.
77
,
227
236
(
2016
).
11.
P.
Ertl
,
D.
Sticker
,
V.
Charwat
,
C.
Kasper
, and
G.
Lepperdinger
, “
Lab-on-a-chip technologies for stem cell analysis
,”
Trends Biotechnol.
32
(
5
),
245
253
(
2014
).
12.
T.
Sun
and
H.
Morgan
, “
Single-cell microfluidic impedance cytometry: A review
,” Microfluid. Nanofluid.
8
,
423
443
(
2010
).
13.
M.
Arabghahestani
,
S.
Poozesh
, and
N. K.
Akafuah
, “
Advances in computational fluid mechanics in cellular flow manipulation: A review
,”
Appl. Sci.
9
(
19
),
4041
(
2019
).
14.
M.
Hirschhorn
,
V.
Tchantchaleishvili
,
R.
Stevens
,
J.
Rossano
, and
A.
Throckmorton
, “
Fluid–structure interaction modeling in cardiovascular medicine—A systematic review 2017–2019
,”
Med. Eng. Phys.
78
,
1
13
(
2020
).
15.
J.
O'Connor
,
P.
Day
,
P.
Mandal
, and
A.
Revell
, “
Computational fluid dynamics in the microcirculation and microfluidics: What role can the lattice Boltzmann method play?
,”
Integr. Biol.
8
(
5
),
589
602
(
2016
).
16.
W.
Mao
,
A.
Caballero
,
R.
McKay
,
C.
Primiano
, and
W.
Sun
, “
Fully-coupled fluid-structure interaction simulation of the aortic and mitral valves in a realistic 3D left ventricle model
,”
PLoS One
12
(
9
),
e0184729
(
2017
).
17.
S.
Tanaka
and
K.
Kashiyama
, “
Ale finite element method for FSI problems with free surface using mesh re-generation method based on background mesh
,”
Int. J. Comput. Fluid Dyn.
20
(
3–4
),
229
236
(
2006
).
18.
N.
Elabbasi
and
K.-J.
Bathe
, “
Some advances in modeling multiphysics-biomedical applications
,” in
Computational Fluid and Solid Mechanics
(
Elsevier
,
2003
), pp.
1676
1679
.
19.
J. D.
Humphrey
and
C. A.
Taylor
, “
Intracranial and abdominal aortic aneurysms: Similarities, differences, and need for a new class of computational models
,”
Annu. Rev. Biomed. Eng.
10
,
221
246
(
2008
).
20.
M.
Toma
,
R.
Chan-Akeley
,
J.
Arias
,
G. D.
Kurgansky
, and
W.
Mao
, “
Fluid–structure interaction analyses of biological systems using smoothed-particle hydrodynamics
,”
Biology
10
(
3
),
185
(
2021
).
21.
S.
Bhakade
,
S.
Kumbhar
,
Y.
Mohite
, and
P.
Kengar
, “
A review on fluid structure interaction analysis methodology
,”
Int. J. Trend Res. Dev.
3
(
3
),
617
6199
(
2016
), https://www.ijtrd.com/papers/IJTRD3911.pdf.
22.
F.
Syed
,
S.
Khan
, and
M.
Toma
, “
Modeling dynamics of the cardiovascular system using fluid-structure interaction methods
,”
Biology
12
(
7
),
1026
(
2023
).
23.
J. P.
Mynard
,
A.
Kondiboyina
,
R.
Kowalski
,
M. M. H.
Cheung
, and
J. J.
Smolich
, “
Measurement, analysis and interpretation of pressure/flow waves in blood vessels
,”
Front. Physiol.
11
,
1085
(
2020
).
24.
R.
Schubert
,
D.
Gaynullina
,
A.
Shvetsova
, and
O. S.
Tarasova
, “
Myography of isolated blood vessels: Considerations for experimental design and combination with supplementary techniques
,”
Front. Physiol.
14
,
1176748
(
2023
).
25.
J.
Hu
,
H.
Wang
,
Z.
Cao
,
G.
Wu
,
J. B.
Jonas
,
Y. X.
Wang
, and
J.
Zhang
, “
Automatic artery/vein classification using a vessel-constraint network for multicenter fundus images
,”
Front. Cell Dev. Biol.
9
,
659941
(
2021
).
26.
G. R.
Bashford
,
Ultrasonic Measurement of Blood Flow Velocity and Applications for Cardiovascular Assessments
(
Springer
,
2015
).
27.
S.
Mohith
,
P. N.
Karanth
, and
S. M.
Kulkarni
, “
Experimental investigation on performance of disposable micropump with retrofit piezo stack actuator for biomedical application
,”
Microsyst. Technol.
25
,
4741
4752
(
2019
).
28.
H. A.
Dereshgi
,
H.
Dal
, and
M. Z.
Yildiz
, “
Piezoelectric micropumps: State of the art review
,”
Microsyst. Technol.
27
,
4127
4129
(
2021
).
29.
L.
An
,
F.
Ji
,
E.
Zhao
,
Y.
Liu
, and
Y.
Liu
, “
Measuring cell deformation by microfluidics
,”
Front. Bioeng. Biotechnol.
11
,
1214544
(
2023
).
30.
O.
Otto
,
P.
Rosendahl
,
A.
Mietke
,
S.
Golfier
,
C.
Herold
,
D.
Klaue
,
S.
Girardo
,
S.
Pagliara
,
A.
Ekpenyong
,
A.
Jacobi
et al, “
Real-time deformability cytometry: On-the-fly cell mechanical phenotyping
,”
Nat. Methods
12
(
3
),
199
202
(
2015
).
31.
N.
Toepfner
,
C.
Herold
,
O.
Otto
,
P.
Rosendahl
,
A.
Jacobi
,
M.
Kräter
,
J.
Stächele
,
L.
Menschner
,
M.
Herbig
,
L.
Ciuffreda
et al, “
Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood
,”
elife
7
,
e29213
(
2018
).
32.
K. R.
Bashant
,
A.
Vassallo
,
C.
Herold
,
R.
Berner
,
L.
Menschner
,
J.
Subburayalu
,
M. J.
Kaplan
,
C.
Summers
,
J.
Guck
,
E. R.
Chilvers
et al, “
Real-time deformability cytometry reveals sequential contraction and expansion during neutrophil priming
,”
J. Leukocyte Biol.
105
(
6
),
1143
1153
(
2019
).
33.
H.
Maik
,
K.
Martin
,
P.
Katarzyna
,
M.
Paul
,
G.
Jochen
, and
O.
Otto
, “
Real-time deformability cytometry: Label-free functional characterization of cells
,” in
Flow Cytometry Protocols
(
Humana Press
,
2018
). pp.
347
369
.
34.
J.
Chen
,
Y.
Zheng
,
Q.
Tan
,
Y. L.
Zhang
,
J.
Li
,
W. R.
Geddie
,
M. A. S.
Jewett
, and
Y.
Sun
, “
A microfluidic device for simultaneous electrical and mechanical measurements on single cells
,”
Biomicrofluidics
5
(
1
),
014113
(
2011
).
35.
A.-G.
Niculescu
,
C.
Chircov
,
A. C.
Bîrcă
, and
A. M.
Grumezescu
, “
Fabrication and applications of microfluidic devices: A review
,”
Int. J. Mol. Sci.
22
(
4
),
2011
(
2021
).
36.
D.
Chang
,
S.
Sakuma
,
K.
Kera
,
N.
Uozumi
, and
F.
Arai
, “
Measurement of the mechanical properties of single Synechocystis sp. strain pcc6803 cells in different osmotic concentrations using a robot-integrated microfluidic chip
,”
Lab Chip
18
(
8
),
1241
1249
(
2018
).
37.
A.
Shakeri
,
S.
Khan
, and
T. F.
Didar
, “
Conventional and emerging strategies for the fabrication and functionalization of PDMS-based microfluidic devices
,”
Lab Chip
21
(
16
),
3053
3075
(
2021
).
38.
S.
Razavi Bazaz
,
O.
Rouhi
,
M. A.
Raoufi
,
F.
Ejeian
,
M.
Asadnia
,
D.
Jin
, and
M.
Ebrahimi Warkiani
, “
3D printing of inertial microfluidic devices
,”
Sci. Rep.
10
(
1
),
5929
(
2020
).
39.
R.
Amin
,
S.
Knowlton
,
A.
Hart
,
B.
Yenilmez
,
F.
Ghaderinezhad
,
S.
Katebifar
,
M.
Messina
,
A.
Khademhosseini
, and
S.
Tasoglu
, “
3D-printed microfluidic devices
,”
Biofabrication
8
(
2
),
022001
(
2016
).
40.
R.
Lindken
,
M.
Rossi
,
S.
Große
, and
J.
Westerweel
, “
Microparticle image velocimetry (μpiv): recent developments, applications, and guidelines
,”
Lab Chip
9
(
17
),
2551
2567
(
2009
).
41.
R. V.
Raghavan
,
J. R.
Friend
, and
L. Y.
Yeo
, “
Particle concentration via acoustically driven microcentrifugation: Micropiv flow visualization and numerical modelling studies
,”
Microfluid. Nanofluid.
8
,
73
84
(
2010
).
42.
K. C.
Kyriakoudi
and
M. A.
Xenos
, “
Magnetohydrodynamic effects on a pathological vessel: An Euler–Lagrange approach
,”
Phys. Fluids
35
(
12
),
121912
(
2023
).
43.
W.-H.
Zu
,
J.-H.
Zhang
,
D.-D.
Chen
,
Y.-Q.
Xu
,
W.
Qiang
, and
F.-B.
Tian
, “
Immersed boundary-lattice Boltzmann method for biological and biomedical flows
,” in
Parallel Computational Fluid Dynamics: 25th International Conference, ParCFD 2013, Changsha, China, May 20–24, 2013
(
Springer
,
2014
), pp.
383
392
.
44.
Y.
Cheng
and
H.
Zhang
, “
Immersed boundary method and lattice Boltzmann method coupled FSI simulation of mitral leaflet flow
,”
Comput. Fluids
39
(
5
),
871
881
(
2010
).
45.
E.
Henry
,
S. H.
Holm
,
Z.
Zhang
,
J. P.
Beech
,
J. O.
Tegenfeldt
,
D. A.
Fedosov
, and
G.
Gompper
, “
Sorting red blood cells by their dynamical properties
,” in
20th International Conference on Miniaturized Systems for Chemistry and Life Sciences, MicroTAS 2016
(
Chemical and Biological Microsystems Society
,
2016
), pp.
786
787
.
46.
P.
Espanol
and
P. B.
Warren
, “
Perspective: Dissipative particle dynamics
,”
J. Chem. Phys.
146
(
15
),
150901
(
2017
).
47.
D. A.
Fedosov
,
M.
Dao
,
G. E.
Karniadakis
, and
S.
Suresh
, “
Computational biorheology of human blood flow in health and disease
,”
Ann. Biomed. Eng.
42
,
368
387
(
2014
).
48.
Z.
Zhang
,
E.
Henry
,
G.
Gompper
, and
D. A.
Fedosov
, “
Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes
,”
J. Chem. Phys.
143
(
24
),
243145
(
2015
).
49.
J.
Zhang
, “
Lattice Boltzmann method for microfluidics: Models and applications
,”
Microfluid. Nanofluid.
10
,
1
28
(
2011
).
50.
R.
Ghosh
,
G. A.
Buxton
,
O. B.
Usta
,
A. C.
Balazs
, and
A.
Alexeev
, “
Designing oscillating cilia that capture or release microscopic particles
,”
Langmuir
26
(
4
),
2963
2968
(
2010
).
51.
J.
Boyd
,
J. M.
Buick
,
J. A.
Cosgrove
, and
P.
Stansell
, “
Application of the lattice Boltzmann method to arterial flow simulation: Investigation of boundary conditions for complex arterial geometries
,”
Australas Phys. Eng. Sci. Med.
27
,
207
212
(
2004
).
52.
O.
Zavaritskaya
,
S.
Dudem
,
D.
Ma
,
K. E.
Rabab
,
S.
Albrecht
,
D.
Tsvetkov
,
M.
Kassmann
,
K.
Thornbury
,
M.
Mladenov
,
C.
Kammermeier
et al, “
Vasodilation of rat skeletal muscle arteries by the novel BK channel opener GoSlo is mediated by the simultaneous activation of BK and Kv7 channels
,”
Br. J. Pharmacol.
177
(
5
),
1164
1186
(
2020
).
53.
J.
Schmid
,
B.
Müller
,
D.
Heppeler
,
D.
Gaynullina
,
M.
Kassmann
,
H.
Gagov
,
M.
Mladenov
,
M.
Gollasch
, and
R.
Schubert
, “
The unexpected role of calcium-activated potassium channels: Limitation of no-induced arterial relaxation
,”
J. Am. Heart Assoc.
7
(
7
),
e007808
(
2018
).
54.
E. K.
Selivanova
,
D. K.
Gaynullina
, and
O. S.
Tarasova
, “
Thyroxine induces acute relaxation of rat skeletal muscle arteries via integrin αvβ3, erk1/2 and integrin-linked kinase
,”
Front. Physiol.
12
,
726354
(
2021
).
55.
M.
Simina Mihuta
,
C.
Paul
,
A.
Borlea
,
C. M.
Cepeha
,
I. P.
Velea
,
I.
Mozos
, and
D.
Stoian
, “
The oscillometric pulse wave analysis is useful in evaluating the arterial stiffness of obese children with relevant cardiometabolic risks
,”
J. Clin. Med.
11
(
17
),
5078
(
2022
).
56.
P.
Salvi
,
F.
Valbusa
,
A.
Kearney-Schwartz
,
C.
Labat
,
A.
Grillo
,
G.
Parati
, and
A.
Benetos
, “
Non-invasive assessment of arterial stiffness: Pulse wave velocity, pulse wave analysis and carotid cross-sectional distensibility: Comparison between methods
,”
J. Clin. Med.
11
(
8
),
2225
(
2022
).
57.
S.
Laha
,
G.
Fourtakas
,
P. K.
Das
, and
A.
Keshmiri
, “
Fluid-structure interaction modeling of bi-leaflet mechanical heart valves using smoothed particle hydrodynamics
,”
Phys. Fluids
35
(
12
),
121902
(
2023
).
58.
S.
Pabi
,
M.
Khan
,
S. K.
Jain
,
A. K.
Sen
,
A.
Raj
et al, “
Effect of stenotic shapes and arterial wall elasticity on the hemodynamics
,”
Phys. Fluids
35
(
10
),
101908
(
2023
).
59.
D.
Sodhani
,
S.
Reese
,
A.
Aksenov
,
S.
Soğanci
,
S.
Jockenhövel
,
P.
Mela
, and
S. E.
Stapleton
, “
Fluid-structure interaction simulation of artificial textile reinforced aortic heart valve: Validation with an in-vitro test
,”
J. Biomech.
78
,
52
69
(
2018
).
60.
J. H.
Lee
,
A. D.
Rygg
,
E. M.
Kolahdouz
,
S.
Rossi
,
S. M.
Retta
,
N.
Duraiswamy
,
L. N.
Scotten
,
B. A.
Craven
, and
B. E.
Griffith
, “
Fluid–structure interaction models of bioprosthetic heart valve dynamics in an experimental pulse duplicator
,”
Ann. Biomed. Eng.
48
,
1475
1490
(
2020
).
61.
A.
Gilmanov
,
H.
Stolarski
, and
F.
Sotiropoulos
, “
Non-linear rotation-free shell finite-element models for aortic heart valves
,”
J. Biomech.
50
,
56
62
(
2017
).
62.
A.
Hasan
,
E. M.
Kolahdouz
,
A.
Enquobahrie
,
T. G.
Caranasos
,
J. P.
Vavalle
, and
B. E.
Griffith
, “
Image-based immersed boundary model of the aortic root
,”
Med. Eng. Phys.
47
,
72
84
(
2017
).
63.
M.
Fedele
,
E.
Faggiano
,
L.
Dedè
, and
A.
Quarteroni
, “
A patient-specific aortic valve model based on moving resistive immersed implicit surfaces
,”
Biomech. Model. Mechanobiol.
16
,
1779
1803
(
2017
).
64.
K.
Cao
and
P.
Sucosky
, “
Aortic valve leaflet wall shear stress characterization revisited: Impact of coronary flow
,”
Comput. Methods Biomech. Biomed. Eng.
20
(
5
),
468
470
(
2017
).
65.
H.
Mohammadi
,
R.
Cartier
, and
R.
Mongrain
, “
3D physiological model of the aortic valve incorporating small coronary arteries
,”
Numer. Methods Biomed. Eng.
33
(
5
),
e2829
(
2017
).
66.
H.
Mohammadi
,
R.
Cartier
, and
R.
Mongrain
, “
Fiber-reinforced computational model of the aortic root incorporating thoracic aorta and coronary structures
,”
Biomech. Model. Mechanobiol.
17
,
263
283
(
2018
).
67.
H.
Mohammadi
,
R.
Cartier
, and
R.
Mongrain
, “
The impact of the aortic valve impairment on the distant coronary arteries hemodynamics: A fluid–structure interaction study
,”
Med. Biol. Eng. Comput.
55
,
1859
1872
(
2017
).
68.
J.
Sigüenza
,
D.
Pott
,
S.
Mendez
,
S. J.
Sonntag
,
T. A. S.
Kaufmann
,
U.
Steinseifer
, and
F.
Nicoud
, “
Fluid-structure interaction of a pulsatile flow with an aortic valve model: A combined experimental and numerical study
,”
Numer. Methods Biomed. Eng.
34
(
4
),
e2945
(
2018
).
69.
E.
Stupak
,
R.
Kačianauskas
,
A.
Kačeniauskas
,
V.
Starikovičius
,
A.
Maknickas
,
R.
Pacevič
,
M.
Staškūienė
,
G.
Davidavičius
, and
A.
Aidietis
, “
The geometric model-based patient-specific simulations of turbulent aortic valve flows
,”
Archives Mech.
69
,
317
(
2017
), http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-11681dbc-de70-4b07-8f7b-5ec1dfd01642.
70.
M.
Toma
,
D. R.
Einstein
,
C. H.
Bloodworth
,
I. V. R. P.
Cochran
,
A. P.
Yoganathan
, and
K. S.
Kunzelman
, “
Fluid–structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure
,”
Numer. Methods Biomed. Eng.
33
(
4
),
e2815
(
2017
).
71.
M.
Toma
,
C. H.
Bloodworth
,
E. L.
Pierce
,
D. R.
Einstein
,
R. P.
Cochran
,
A. P.
Yoganathan
, and
K. S.
Kunzelman
, “
Fluid-structure interaction analysis of ruptured mitral chordae tendineae
,”
Ann. Biomed. Eng.
45
,
619
631
(
2017
).
72.
S.
Khodaei
,
N.
Fatouraee
, and
M.
Nabaei
, “
Numerical simulation of mitral valve prolapse considering the effect of left ventricle
,”
Math. Biosci.
285
,
75
80
(
2017
).
73.
A.
Caballero
,
W.
Mao
,
R.
McKay
,
C.
Primiano
,
S.
Hashim
, and
W.
Sun
, “
New insights into mitral heart valve prolapse after chordae rupture through fluid–structure interaction computational modeling
,”
Sci. Rep.
8
(
1
),
17306
(
2018
).
74.
L.
Feng
,
N.
Qi
,
H.
Gao
,
W.
Sun
,
M.
Vazquez
,
B. E.
Griffith
, and
X.
Luo
, “
On the chordae structure and dynamic behaviour of the mitral valve
,”
IMA J. Appl. Math.
83
(
6
),
1066
1091
(
2018
).
75.
K.
Hassani
,
A.
Karimi
,
A.
Dehghani
,
A. T.
Golpaygani
,
H.
Abdi
, and
D. M.
Espino
, “
Development of a fluid-structure interaction model to simulate mitral valve malcoaptation
,”
Perfusion
34
(
3
),
225
230
(
2019
).
76.
K.
Cao
,
S. K.
Atkins
,
A.
McNally
,
J.
Liu
, and
P.
Sucosky
, “
Simulations of morphotype-dependent hemodynamics in non-dilated bicuspid aortic valve aortas
,”
J. Biomech.
50
,
63
70
(
2017
).
77.
K.
Cao
and
P.
Sucosky
, “
Computational comparison of regional stress and deformation characteristics in tricuspid and bicuspid aortic valve leaflets
,”
Numer. Methods Biomed. Eng.
33
(
3
),
e02798
(
2017
).
78.
E. F.
Bakke
,
J.
Hisdal
,
J. J.
Jørgensen
,
A.
Kroese
, and
E.
Stranden
, “
Blood pressure in patients with intermittent claudication increases continuously during walking
,”
Eur. J. Vasc. Endovascular Surg.
33
(
1
),
20
25
(
2007
).
79.
K.
Lavon
,
R.
Halevi
,
G.
Marom
,
S.
Ben Zekry
,
A.
Hamdan
,
H.
Joachim Schäfers
,
E.
Raanani
, and
R.
Haj-Ali
, “
Fluid–structure interaction models of bicuspid aortic valves: The effects of nonfused cusp angles
,”
J. Biomech. Eng.
140
(
3
),
031010
(
2018
).
80.
J.
Liu
,
J. A.
Shar
, and
P.
Sucosky
, “
Wall shear stress directional abnormalities in BAV aortas: Toward a new hemodynamic predictor of aortopathy?
,”
Front. Physiol.
9
,
993
(
2018
).
81.
F.
Sadeghpour
,
N.
Fatouraee
, and
M.
Navidbakhsh
, “
Haemodynamic of blood flow through stenotic aortic valve
,”
J. Med. Eng. Technol.
41
(
2
),
108
114
(
2017
).
82.
A. B.
Olcay
,
A.
Amindari
,
K.
Kirkkopru
, and
H. C.
Yalcin
, “
Characterization of disturbed hemodynamics due to stenosed aortic jets with a Lagrangian coherent structures technique
,”
J. Appl. Fluid Mech.
11
,
375
(
2018
).
83.
E.
Soifer
,
D.
Weiss
,
G.
Marom
, and
S.
Einav
, “
The effect of pathologic venous valve on neighboring valves: Fluid–structure interactions modeling
,”
Med. Biol. Eng. Comput.
55
,
991
999
(
2017
).
84.
R.
Campobasso
,
F.
Condemi
,
M.
Viallon
,
P.
Croisille
,
S.
Campisi
, and
S.
Avril
, “
Evaluation of peak wall stress in an ascending thoracic aortic aneurysm using FSI simulations: Effects of aortic stiffness and peripheral resistance
,”
Cardiovasc. Eng. Tech.
9
,
707
722
(
2018
).
85.
H.
Rajabzadeh-Oghaz
,
B.
Firoozabadi
,
M. S.
Saidi
,
M.
Monjezi
,
M. A.
Navabi Shirazi
, and
E.
Malakan Rad
, “
Pulsatile blood flow in total cavopulmonary connection: A comparison between y-shaped and t-shaped geometry
,”
Med. Biol. Eng. Comput.
55
,
213
224
(
2017
).
86.
A.
Chitsaz
,
A.
Nejat
, and
R.
Nouri
, “
Three-dimensional numerical simulations of aspiration process: Evaluation of two penumbra aspiration catheters performance
,”
Artif. Organs
42
(
12
),
E406
E419
(
2018
).
87.
B.
Guerciotti
,
C.
Vergara
,
S.
Ippolito
,
A.
Quarteroni
,
C.
Antona
, and
R.
Scrofani
, “
Computational study of the risk of restenosis in coronary bypasses
,”
Biomech. Model. Mechanobiol.
16
,
313
332
(
2017
).
88.
T. M. J.
van Bakel
,
C. J.
Arthurs
,
F. J. H.
Nauta
,
K. A.
Eagle
,
J. A.
van Herwaarden
,
F. L.
Moll
,
S.
Trimarchi
,
H. J.
Patel
, and
C. A.
Figueroa
, “
Cardiac remodelling following thoracic endovascular aortic repair for descending aortic aneurysms
,”
Eur. J. Cardio-Thoracic Surg.
55
(
6
),
1061
1070
(
2019
).
89.
R.
Jayendiran
,
B.
Nour
, and
A.
Ruimi
, “
Computational fluid–structure interaction analysis of blood flow on patient-specific reconstructed aortic anatomy and aneurysm treatment with Dacron graft
,”
J. Fluids Struct.
81
,
693
711
(
2018
).
90.
R.
Jayendiran
,
B.
Nour
, and
A.
Ruimi
, “
Fluid-structure interaction (FSI) analysis of stent-graft for aortic endovascular aneurysm repair (EVAR): Material and structural considerations
,”
J. Mech. Behav. Biomed. Mater.
87
,
95
110
(
2018
).
91.
S.
Rahmani
,
A.
Jarrahi
,
M.
Navidbakhsh
, and
M.
Alizadeh
, “
Investigating the performance of four specific types of material grafts and their effects on hemodynamic patterns as well as on von mises stresses in a grafted three-layer aortic model using fluid-structure interaction analysis
,”
J. Med. Eng. Technol.
41
(
8
),
630
643
(
2017
).
92.
A.
Caimi
,
F.
Sturla
,
B.
Good
,
M.
Vidotto
,
R.
De Ponti
,
F.
Piatti
,
K. B.
Manning
, and
A.
Redaelli
, “
Toward the virtual benchmarking of pneumatic ventricular assist devices: Application of a novel fluid-structure interaction based strategy to the Penn state 12 cc device
,”
J. Biomech. Eng.
139
(
8
),
081008
(
2017
).
93.
D.
Obidowski
,
P.
Reorowicz
,
D.
Witkowski
,
K.
Sobczak
, and
K.
Jóźwik
, “
Methods for determination of stagnation in pneumatic ventricular assist devices
,”
Int. J. Artif. Organs
41
(
10
),
653
663
(
2018
).
94.
M.
Alizadeh
,
S.
Rahmani
, and
P.
Tehrani
, “
Calculating the aortic valve force and generated power by a specific cardiac assist device (AVICENA) in different counterpulsation
,”
J. Braz. Soc. Mech. Sci. Eng.
40
,
286
(
2018
).
95.
S.
Rahmani
,
M.
Alizadeh
,
P.
Tehrani
, and
M.
Navidbakhsh
, “
Performance and biomechanical analysis of an intra-aortic cardiac assist device in different boundary conditions
,”
J. Mech. Sci. Technol.
32
,
3995
4002
(
2018
).
96.
S.
Rahmani
,
M.
Navidbakhsh
, and
M.
Alizadeh
, “
Investigation of a new prototype of multi-balloons LVAD using FSI
,”
J. Braz. Soc. Mech. Sci. Eng.
40
,
8
(
2018
).
97.
S.
Rahmani
,
M.
Oveysi
,
A.
Heidari
,
M.
Navidbakhsh
, and
M.
Alizadeh
, “
Numerical modeling of a prototype cardiac assist device by implementing fluid-structure interaction
,”
Artery Res.
22
,
24
35
(
2018
).
98.
J.
Wu
,
H.
Fang
,
J.
Zhang
, and
S.
Yan
, “
Modular microfluidics for life sciences
,”
J. Nanobiotechnol.
21
(
1
),
1
30
(
2023
).
99.
F. E. H.
Tay
,
Microfluidics and BioMEMS Applications
(
Springer
,
2002
).
100.
G.
Lins
and
L.
Skogberg
,
An investigation of insulin pump therapy and evaluation of using a micropump in a future insulin pump
(
Examensarbete MMK
,
Stockholm
,
2001
).
101.
H. T. G.
Van Lintel
,
F. C. M.
Van de Pol
, and
S.
Bouwstra
, “
A piezoelectric micropump based on micromachining of silicon
,”
Sens. Actuators
15
(
2
),
153
167
(
1988
).
102.
M.
Koch
,
N.
Harris
,
A. G. R.
Evans
,
N. M.
White
, and
A.
Brunnschweiler
, “
A novel micromachined pump based on thick-film piezoelectric actuation
,”
Sens. Actuators, A
70
(
1–2
),
98
103
(
1998
).
103.
C. G. J.
Schabmueller
,
M.
Koch
,
M. E.
Mokhtari
,
A. G. R.
Evans
,
A.
Brunnschweiler
, and
H.
Sehr
, “
Self-aligning gas/liquid micropump
,”
J. Micromech. Microeng.
12
(
4
),
420
(
2002
).
104.
K.
Junwu
,
Y.
Zhigang
,
P.
Taijiang
,
C.
Guangming
, and
W.
Boda
, “
Design and test of a high-performance piezoelectric micropump for drug delivery
,”
Sens. Actuators, A
121
(
1
),
156
161
(
2005
).
105.
G.-H.
Feng
and
E. S.
Kim
, “
Piezoelectrically actuated dome-shaped diaphragm micropump
,”
J. Microelectromech. Syst.
14
(
2
),
192
199
(
2005
).
106.
A.
Geipel
,
A.
Doll
,
F.
Goldschmidtboing
,
P.
Jantscheff
,
N.
Esser
,
U.
Massing
, and
P.
Woias
, “
Pressure-independent micropump with piezoelectric valves for low flow drug delivery systems
,” in
19th IEEE International Conference on Micro Electro Mechanical Systems
(
IEEE
,
2006
), pp.
786
789
.
107.
B.
Ma
,
S.
Liu
,
Z.
Gan
,
G.
Liu
,
X.
Cai
,
H.
Zhang
, and
Z.
Yang
, “
A PZT insulin pump integrated with a silicon micro needle array for transdermal drug delivery
,” in
56th Electronic Components and Technology Conference 2006
(
IEEE
,
2006
), p.
5
.
108.
A.
Doll
,
M.
Heinrichs
,
F.
Goldschmidtboeing
,
H.-J.
Schrag
,
U. T.
Hopt
, and
P.
Woias
, “
A high performance bidirectional micropump for a novel artificial sphincter system
,”
Sens. Actuators, A
130–131
,
445
453
(
2006
).
109.
Y.-C.
Hsu
,
S.-J.
Lin
, and
C.-C.
Hou
, “
Development of peristaltic antithrombogenic micropumps for in vitro and ex vivo blood transportation tests
,”
Microsyst. Technol.
14
,
31
41
(
2008
).
110.
R. R.
Gidde
,
P. M.
Pawar
, and
V. P.
Dhamgaye
, “
Fully coupled modeling and design of a piezoelectric actuation based valveless micropump for drug delivery application
,”
Microsyst. Technol.
26
(
2
),
633
645
(
2020
).
111.
S.
Yang
,
X.
He
,
S.
Yuan
,
J.
Zhu
, and
Z.
Deng
, “
A valveless piezo-electric micropump with a Coanda jet element
,”
Sens. Actuators, A
230
,
74
82
(
2015
).
112.
S.
Fournier
and
E.
Chappel
, “
Modeling of a piezoelectric MEMS micropump dedicated to insulin delivery and experimental validation using integrated pressure sensors: Application to partial occlusion management
,”
J. Sens.
2017
,
3719853
.
113.
J.
Ni
,
W.
Xuan
,
Y.
Li
,
J.
Chen
,
W.
Li
,
Z.
Cao
,
S.
Dong
,
H.
Jin
,
L.
Sun
, and
J.
Luo
, “
Analytical and experimental study of a valveless piezoelectric micropump with high flowrate and pressure load
,”
Microsyst. Nanoeng.
9
(
1
),
72
(
2023
).
114.
S. R.
Hwang
,
W. Y.
Sim
,
G. Y.
Kim
,
S. S.
Yang
,
J. J.
Pak
et al, “
Fabrication and test of a submicroliter-level thermopneumatic micropump for transdermal drug delivery
,” in
2005 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
(
IEEE
,
2005
), pp.
143
145
.
115.
J.-H.
Kim
,
K.-H.
Na
,
C. J.
Kang
, and
Y.-S.
Kim
, “
A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass
,”
Sens. Actuators, A
120
(
2
),
365
369
(
2005
).
116.
O. C.
Jeong
,
S. W.
Park
,
S. S.
Yang
, and
J. J.
Pak
, “
Fabrication of a peristaltic PDMS micropump
,”
Sens. Actuators, A
123–124
,
453
458
(
2005
).
117.
P. S.
Chee
,
M.
Nafea
,
P. L.
Leow
, and
M. S. M.
Ali
, “
Thermal analysis of wirelessly powered thermo-pneumatic micropump based on planar LC circuit
,”
J. Mech. Sci. Technol.
30
,
2659
2665
(
2016
).
118.
M.
Nafea
,
J.
Baliah
, and
M. S. M.
Ali
, “
Modeling and simulation of a wirelessly-powered thermopneumatic micropump for drug delivery applications
,”
Indonesian J. Electr. Eng. Inf.
7
(
2
),
182
189
(
2019
).
119.
S.-H.
Oh
and
C.-N.
Kim
, “
A numerical study on the flow control and pumping characteristics of a radial flow thermo-pneumatic micropump with electromagnetic resistance
,”
Int. J. Precis. Eng. Manuf.
13
,
103
110
(
2012
).
120.
C.
Zhan
,
T.
Lo
,
L.
Liu
, and
T.
Peihsin
, “
A silicon membrane micropump with integrated bimetallic actuator
,”
Chin. J. Electron.
5
(
2
),
33
(
1996
), https://repository. hkust.edu.hk/ir/Record/1783.1-26082.
121.
J.
Zou
,
X. Y.
Ye
,
Z. Y.
Zhou
, and
Y.
Yang
, “
A novel thermally-actuated silicon micropump
,” in
1997 International Symposium on Micromechanics and Human Science (Cat. No. 97TH8311)
(
IEEE
,
1997
), pp.
231
234
.
122.
S.
Böhm
,
W.
Olthuis
, and
P.
Bergveld
, “
A plastic micropump constructed with conventional techniques and materials
,”
Sens. Actuators, A
77
(
3
),
223
228
(
1999
).
123.
C.
Yamahata
,
C.
Lotto
,
E.
Al-Assaf
, and
M. A. M.
Gijs
, “
A PMMA valveless micropump using electromagnetic actuation
,”
Microfluid. Nanofluid.
1
,
197
207
(
2005
).
124.
C.
Yamahata
,
F.
Lacharme
, and
M. A. M.
Gijs
, “
Glass valveless micropump using electromagnetic actuation
,”
Microelectron. Eng.
78–79
,
132
137
(
2005
).
125.
T.
Pan
,
S. J.
McDonald
,
E. M.
Kai
, and
B.
Ziaie
, “
A magnetically driven PDMS micropump with ball check-valves
,”
J. Micromech. Microeng.
15
(
5
),
1021
(
2005
).
126.
L. A.
Herzenberg
,
R. G.
Sweet
, and
L. A.
Herzenberg
, “
Fluorescence-activated cell sorting
,”
Sci. Am.
234
(
3
),
108
118
(
1976
).
127.
N. H.
Staunstrup
,
C. C.
Petersen
,
T.
Fuglsang
,
A.
Starnawska
,
A.
Chernomorchenko
,
P.
Qvist
, and
V. R.
Schack
, “
Comparison of electrostatic and mechanical cell sorting with limited starting material
,”
Cytometry, Part A
101
(
4
),
298
310
(
2022
).
128.
C.
Skrekas
,
R.
Ferreira
, and
F.
David
, “
Fluorescence-activated cell sorting as a tool for recombinant strain screening
,” in
Yeast Metabolic Engineering: Methods and Protocols
(
Springer
,
2022
), pp.
39
57
.
129.
Y.
Tsujisaka
,
T.
Hatani
,
C.
Okubo
,
R.
Ito
,
A.
Kimura
,
M.
Narita
,
K.
Chonabayashi
,
S.
Funakoshi
,
A.
Lucena-Cacace
,
T.
Toyoda
et al, “
Purification of human IPSC-derived cells at large scale using microrna switch and magnetic-activated cell sorting
,”
Stem Cell Rep.
17
(
7
),
1772
1785
(
2022
).
130.
C. W. S.
Iv
,
C. D.
Reyes
, and
G. P.
López
, “
Microfluidic cell sorting: A review of the advances in the separation of cells from debulking to rare cell isolation
,”
Lab Chip
15
(
5
),
1230
1249
(
2015
).
131.
M. M.
Dupin
,
I.
Halliday
,
C. M.
Care
, and
L. L.
Munn
, “
Lattice Boltzmann modelling of blood cell dynamics
,”
Int. J. Comput. Fluid Dyn.
22
(
7
),
481
492
(
2008
).
132.
H.-T.
Low
,
M.
Ju
,
Y.
Sui
,
T.
Nazir
,
B.
Namgung
, and
S.
Kim
, “
Numerical simulations of deformation and aggregation of red blood cells in shear flow
,”
Crit. Rev. Biomed. Eng.
41
,
425
(
2013
).
133.
B.
Qiu
,
H.-L.
Tan
, and
H.-B.
Li
, “
Lattice Boltzmann simulation of one particle migrating in a pulsating flow in microvessel
,”
Commun. Theor. Phys.
56
(
4
),
756
(
2011
).
134.
M. M.
Dupin
,
I.
Halliday
, and
C. M.
Care
, “
A multi-component lattice Boltzmann scheme: Towards the mesoscale simulation of blood flow
,”
Med. Eng. Phys.
28
(
1
),
13
18
(
2006
).
135.
A. M.
Artoli
,
A.
Sequeira
,
A. S.
Silva-Herdade
, and
C.
Saldanha
, “
Leukocytes rolling and recruitment by endothelial cells: Hemorheological experiments and numerical simulations
,”
J. Biomech.
40
(
15
),
3493
3502
(
2007
).
136.
A.
Sequeira
,
A. M.
Artoli
,
A. S.
Silva-Herdade
, and
C.
Saldanha
, “
Leukocytes dynamics in microcirculation under shear-thinning blood flow
,”
Comput. Math. Appl.
58
(
5
),
1035
1044
(
2009
).
137.
C.
Migliorini
,
Y.
Qian
,
H.
Chen
,
E. B.
Brown
,
R. K.
Jain
, and
L. L.
Munn
, “
Red blood cells augment leukocyte rolling in a virtual blood vessel
,”
Biophys. J.
83
(
4
),
1834
1841
(
2002
).
138.
C.
Sun
,
C.
Migliorini
, and
L. L.
Munn
, “
Red blood cells initiate leukocyte rolling in postcapillary expansions: A lattice Boltzmann analysis
,”
Biophys. J.
85
(
1
),
208
222
(
2003
).
139.
C.
Sun
and
L. L.
Munn
, “
Influence of erythrocyte aggregation on leukocyte margination in postcapillary expansions: A lattice Boltzmann analysis
,”
Phys. A
362
(
1
),
191
196
(
2006
).
140.
C.
Sun
and
L. L.
Munn
, “
Particulate nature of blood determines macroscopic rheology: A 2D lattice Boltzmann analysis
,”
Biophys. J.
88
(
3
),
1635
1645
(
2005
).
141.
C.
Sun
and
L. L.
Munn
, “
Lattice-Boltzmann simulation of blood flow in digitized vessel networks
,”
Comput. Math. Appl.
55
(
7
),
1594
1600
(
2008
).
142.
C.
Sun
,
R. K.
Jain
, and
L. L.
Munn
, “
Non-uniform plasma leakage affects local hematocrit and blood flow: Implications for inflammation and tumor perfusion
,”
Ann. Biomed. Eng.
35
,
2121
2129
(
2007
).
143.
A.
Kilimnik
,
W.
Mao
, and
A.
Alexeev
, “
Inertial migration of deformable capsules in channel flow
,”
Phys. Fluids
23
(
12
),
123302
(
2011
).
144.
J. P.
Arata
and
A.
Alexeev
, “
Designing microfluidic channel that separates elastic particles upon stiffness
,”
Soft Matter
5
(
14
),
2721
2724
(
2009
).
145.
T.
Krüger
,
D.
Holmes
, and
P. V.
Coveney
, “
Deformability-based red blood cell separation in deterministic lateral displacement devices—a simulation study
,”
Biomicrofluidics
8
(
5
),
054114
(
2014
).
146.
A.
Tripathi
,
A.
Bhattacharya
, and
A. C.
Balazs
, “
Size selectivity in artificial cilia–particle interactions: Mimicking the behavior of suspension feeders
,”
Langmuir
29
(
14
),
4616
4621
(
2013
).
147.
L.
Crowl
and
A. L.
Fogelson
, “
Analysis of mechanisms for platelet near-wall excess under arterial blood flow conditions
,”
J. Fluid Mech.
676
,
348
375
(
2011
).
148.
H.
Chen
,
J. I.
Angerer
,
M.
Napoleone
,
A. J.
Reininger
,
S. W.
Schneider
,
A.
Wixforth
,
M. F.
Schneider
, and
A.
Alexander-Katz
, “
Hematocrit and flow rate regulate the adhesion of platelets to von Willebrand factor
,”
Biomicrofluidics
7
(
6
),
064113
(
2013
).
149.
D. A.
Reasor
,
M.
Mehrabadi
,
D. N.
Ku
, and
C. K.
Aidun
, “
Determination of critical parameters in platelet margination
,”
Ann. Biomed. Eng.
41
,
238
249
(
2013
).
150.
T.
Skorczewski
,
L. C.
Erickson
, and
A. L.
Fogelson
, “
Platelet motion near a vessel wall or thrombus surface in two-dimensional whole blood simulations
,”
Biophys. J.
104
(
8
),
1764
1772
(
2013
).
151.
A.
Özbey
,
M.
Karimzadehkhouei
,
S.
Akgönül
,
D.
Gozuacik
, and
A.
Koşar
, “
Inertial focusing of microparticles in curvilinear microchannels
,”
Sci. Rep.
6
(
1
),
38809
(
2016
).
152.
A.
Thanormsridetchai
,
D.
Ketpun
,
W.
Srituravanich
,
P.
Piyaviriyakul
,
A.
Sailasuta
,
W.
Jeamsaksiri
,
W.
Sripumkhai
, and
A.
Pimpin
, “
Focusing and sorting of multiple-sized beads and cells using low-aspect-ratio spiral microchannels
,”
J. Mech. Sci. Technol.
31
,
5397
5405
(
2017
).
153.
H.
Song
,
J. M.
Rosano
,
Y.
Wang
,
C. J.
Garson
,
B.
Prabhakarpandian
,
K.
Pant
,
G. J.
Klarmann
,
L. M.
Alvarez
, and
E.
Lai
, “
Spiral-shaped inertial stem cell device for high-throughput enrichment of IPSC-derived neural stem cells
,”
Microfluid. Nanofluid.
21
,
64
(
2017
).
154.
L.
Liu
,
L.
Han
,
X.
Shi
,
W.
Tan
,
W.
Cao
, and
G.
Zhu
, “
Hydrodynamic separation by changing equilibrium positions in contraction–expansion array channels
,”
Microfluid. Nanofluid.
23
(
4
),
52
(
2019
).
155.
D.
Yuan
,
R.
Sluyter
,
Q.
Zhao
,
S.
Tang
,
S.
Yan
,
G.
Yun
,
M.
Li
,
J.
Zhang
, and
W.
Li
, “
Dean-flow-coupled elasto-inertial particle and cell focusing in symmetric serpentine microchannels
,”
Microfluid. Nanofluid.
23
,
41
(
2019
).
156.
Y.-H.
Nam
,
S.-K.
Lee
,
J.-H.
Kim
, and
J.-H.
Park
, “
PDMS membrane filter with nano-slit array fabricated using three-dimensional silicon mold for the concentration of particles with bacterial size range
,”
Microelectron. Eng.
215
,
111008
(
2019
).
157.
E. J.
Mossige
,
A.
Jensen
, and
M. M.
Mielnik
, “
Separation and concentration without clogging using a high-throughput tunable filter
,”
Phys. Rev. Appl.
9
(
5
),
054007
(
2018
).
158.
J.-T.
Ma
,
Y.-Q.
Xu
, and
X.-Y.
Tang
, “
A numerical simulation of cell separation by simplified asymmetric pinched flow fractionation
,”
Comput. Math. Methods Med.
2016
,
2564584
.
159.
R.
Indhu
,
A. S.
Mercy
,
K. M.
Shreemathi
,
S.
Radha
,
S.
Kirubaveni
, and
B. S.
Sreeja
, “
Design of a filter using array of pillar for particle separation
,” in Second International Conference on Large Area Flexible Microelectronics (ILAFM 2016): Wearable Electronics, 20–22 December 2016 [
Mater. Today: Proc.
5
(
4
),
10889
10894
(
2018
)].
160.
D. J.
Munk
,
T.
Kipouros
,
G. A.
Vio
,
G. P.
Steven
, and
G. T.
Parks
, “
Topology optimisation of micro fluidic mixers considering fluid-structure interactions with a coupled lattice Boltzmann algorithm
,”
J. Comput. Phys.
349
,
11
32
(
2017
).
161.
C.-T.
Huang
,
P.-N.
Li
,
C.-Y.
Pai
,
T.-S.
Leu
, and
C.-P.
Jen
, “
Design and simulation of a microfluidic blood-plasma separation chip using microchannel structures
,”
Sep. Sci. Technol.
45
(
1
),
42
49
(
2009
).
162.
W.
Mao
and
A.
Alexeev
, “
Hydrodynamic sorting of microparticles by size in ridged microchannels
,”
Phys. Fluids
23
(
5
),
051704
(
2011
).
163.
S. C.
Hur
,
N. K.
Henderson-MacLennan
,
E. R. B.
McCabe
, and
D.
Di Carlo
, “
Deformability-based cell classification and enrichment using inertial microfluidics
,”
Lab Chip
11
(
5
),
912
920
(
2011
).
164.
T.
Ye
,
N.
Phan-Thien
,
B. C.
Khoo
, and
C. T.
Lim
, “
Dissipative particle dynamics simulations of deformation and aggregation of healthy and diseased red blood cells in a tube flow
,”
Phys. Fluids
26
(
11
),
111902
(
2014
).
165.
L. L.
Xiao
,
S.
Chen
,
C. S.
Lin
, and
Y.
Liu
, “
Simulation of a single red blood cell flowing through a microvessel stenosis using dissipative particle dynamics
,”
Mol. Cell. Biomech.
11
(
1
),
67
(
2014
).
166.
F.
Serrano-Alcalde
,
J. M.
García-Aznar
, and
M. J.
Gómez-Benito
, “
The role of nuclear mechanics in cell deformation under creeping flows
,”
J. Theor. Biol.
432
,
25
32
(
2017
).
167.
S. M.
Hosseini
and
J. J.
Feng
, “
How malaria parasites reduce the deformability of infected red blood cells
,”
Biophys. J.
103
(
1
),
1
10
(
2012
).
168.
K.-I.
Tsubota
,
S.
Wada
, and
T.
Yamaguchi
, “
Particle method for computer simulation of red blood cell motion in blood flow
,”
Comput. Methods Programs Biomed.
83
(
2
),
139
146
(
2006
).
169.
R.
Verberg
,
A.
Alexeev
, and
A. C.
Balazs
, “
Modeling the release of nanoparticles from mobile microcapsules
,”
J. Chem. Phys.
125
(
22
),
224712
(
2006
).
170.
R.
Verberg
,
A. T.
Dale
,
P.
Kumar
,
A.
Alexeev
, and
A. C.
Balazs
, “
Healing substrates with mobile, particle-filled microcapsules: Designing a ‘repair and go’ system
,”
J. R Soc. Interface
4
(
13
),
349
357
(
2007
).
171.
X.
Jia
and
R. A.
Williams
, “
A hybrid mesoscale modelling approach to dissolution of granules and tablets
,”
Chem. Eng. Res. Des.
85
(
7
),
1027
1038
(
2007
).
172.
A. R.
Bausch
,
F.
Ziemann
,
A. A.
Boulbitch
,
K.
Jacobson
, and
E.
Sackmann
, “
Local measurements of viscoelastic parameters of adherent cell surfaces by magnetic bead microrheometry
,”
Biophys. J.
75
(
4
),
2038
2049
(
1998
).
173.
R. M.
Hochmuth
, “
Micropipette aspiration of living cells
,”
J. Biomech.
33
(
1
),
15
22
(
2000
).
174.
F. J.
Armistead
,
J. G. D.
Pablo
,
H.
Gadêlha
,
S. A.
Peyman
, and
S. D.
Evans
, “
Cells under stress: An inertial-shear microfluidic determination of cell behavior
,”
Biophys. J.
116
(
6
),
1127
1135
(
2019
).
175.
J.
Tan
,
S.
Sohrabi
,
R.
He
, and
Y.
Liu
, “
Numerical simulation of cell squeezing through a micropore by the immersed boundary method
,”
Proc. Inst. Mech. Eng., Part C
232
(
3
),
502
514
(
2018
).
176.
J. Y.
Moon
,
R. I.
Tanner
, and
J. S.
Lee
, “
A numerical study on the elastic modulus of volume and area dilation for a deformable cell in a microchannel
,”
Biomicrofluidics
10
(
4
),
044110
(
2016
).
177.
Y.
Henon
,
G. J.
Sheard
, and
A.
Fouras
, “
Erythrocyte deformation in a microfluidic cross-slot channel
,”
RSC Adv.
4
(
68
),
36079
36088
(
2014
).
178.
Z.
Zhang
,
J.
Xu
, and
X.
Chen
, “
Modeling cell deformation in CTC microfluidic filters
,” in
ASME International Mechanical Engineering Congress and Exposition
(
American Society of Mechanical Engineers
,
2014
), Vol.
46469
, p.
V003T03A034
.
179.
R.
Valente
,
A.
Mourato
,
M.
Brito
,
J.
Xavier
,
A.
Tomás
, and
S.
Avril
, “
Fluid–structure interaction modeling of ascending thoracic aortic aneurysms in simvascular
,”
Biomechanics
2
(
2
),
189
204
(
2022
).
180.
U.
Hackstein
,
S.
Krickl
, and
S.
Bernhard
, “
Estimation of ARMA-model parameters to describe pathological conditions in cardiovascular system models
,”
Inf. Med. Unlocked
18
,
100310
(
2020
).
181.
M.
Kanchan
and
R.
Maniyeri
, “
Fluid–structure interaction study and flowrate prediction past a flexible membrane using immersed boundary method and artificial neural network techniques
,”
J. Fluids Eng.
142
(
5
),
051501
(
2020
).
182.
F.
Mazhar
,
A.
Javed
, and
A.
Altinkaynak
, “
A novel artificial neural network-based interface coupling approach for partitioned fluid–structure interaction problems
,”
Eng. Anal. Boundary Elements
151
,
287
308
(
2023
).
183.
T.
Hou
,
Y.
Ren
,
Y.
Chan
,
J.
Wang
, and
Y.
Yan
, “
Flow‐induced shear stress and deformation of a core–shell‐structured microcapsule in a microchannel
,”
Electrophoresis
43
(
20
),
1993
2004
(
2022
).
You do not currently have access to this content.