The square lattice tower with tubular members (SLTTM) is widely used in civil engineering. Wind load is the primary factor affecting the stability of these structures. This paper presents the wind loads of the SLTTM at different Reynolds numbers (Re) through wind tunnel testing and large eddy simulation (LES). A series of wind tunnel tests with four segment models were first conducted to discuss the effects of wind direction, turbulence intensity, and solidity ratio on the aerodynamic force under low and subcritical Reynolds numbers. The LES method was subsequently employed to determine the aerodynamic force coefficient at Re = 191–1.34 × 106 in both the smooth and uniform turbulent wind fields. The results from wind tunnel tests indicate that the mean and fluctuating drag coefficients at low Reynolds numbers are somewhat different from those at subcritical Reynolds numbers. The solidity ratio and wind direction exert a notable influence on the mean drag coefficient, whereas their impact on the fluctuating drag coefficient is relatively minimal. As the turbulence intensity increases, both the mean and fluctuating drag coefficients exhibit a notable rise. The results of the LES at Re = 191–1.34 × 106 show that an increase in turbulence intensity can markedly elevate the fluctuating drag coefficient. However, the effect on the mean drag coefficient is found to depend on the Reynolds number range. The Reynolds number effect on the mean and fluctuating drag coefficients of the SLTTM may be primarily attributed to the members without and with a shielding effect, respectively.

1.
Ahmad
,
S.
and
Ul-Islam
,
S.
, “
Numerical Investigation of fluid flow past four cylinders at low Reynolds numbers
,”
Math. Probl. Eng.
2021
,
1127324
.
2.
Azzi
,
Z.
,
Elawady
,
A.
,
Irwin
,
P.
,
Chowdhury
,
A. G.
, and
Shdid
,
C. A.
, “
Aeroelastic modeling to study the wind-induced response of a self-supported lattice tower
,”
Eng. Struct.
245
,
112885
(
2021
).
3.
Balczó
,
M.
,
Goricsán
,
I.
,
Lajos
,
T.
,
Regert
,
T.
, and
Sebestyén
,
P.
, “
Prediction of wind load acting on telecommunication masts
,” IABSE Symposium Report 92(25) (
2006
).
4.
Calotescu
,
I.
,
Torre
,
S.
,
Freda
,
A.
, and
Solari
,
G.
, “
Wind tunnel testing of telecommunication lattice towers equipped with ancillaries
,”
Eng. Struct.
241
,
112526
(
2021
).
5.
Deng
,
H. Z.
,
Xu
,
H. J.
,
Duan
,
C. Y.
,
Jin
,
X. H.
, and
Wang
,
Z. H.
, “
Experimental and numerical study on the responses of a transmission tower to skew incident winds
,”
J. Wind Eng. Ind Aerodyn.
157
,
171
(
2016
).
6.
Elawady
,
A.
,
Aboshosha
,
H.
,
El Damatty
,
A.
,
Bitsuamlak
,
G.
,
Hangan
,
H.
, and
Elatar
,
A.
, “
Aero-elastic testing of multi-spanned transmission line subjected to downbursts
,”
J. Wind Eng. Ind Aerodyn.
169
,
194
(
2017
).
7.
Fu
,
X.
,
Du
,
W. L.
,
Li
,
H. N.
, and
Ren
,
L.
, “
On-site measured gust response factors of transmission towers based on SHM system
,”
J. Aerosp. Eng.
34
,
04020104
(
2021
).
8.
Fu
,
X.
,
Tan
,
Z. X.
,
Li
,
H. N.
, and
Li
,
G.
, “
Static and dynamic response characteristics of a full-scale long-cantilever tower under various loading conditions
,”
J. Struct. Eng.
149
,
05023002
(
2023
).
9.
Gao
,
Y.
,
Yin
,
C.
,
Zhang
,
H.
,
Yang
,
K.
,
Zhao
,
X.
, and
Sun
,
Z.
, “
Numerical study on flow around four square-arranged cylinders at low Reynolds numbers
,”
Math. Probl. Eng.
2017
,
6381256
.
10.
Hamada
,
A.
,
King
,
J. P. C.
,
El Damatty
,
A. A.
,
Bitsuamlak
,
G.
, and
Hamada
,
M.
, “
The response of a guyed transmission line system to boundary layer wind
,”
Eng. Struct.
139
,
135
(
2017
).
11.
Holmes
,
J. D.
and
Bekele
,
S.
,
Wind Loading of Structures
(
CRC Press
,
2020
).
12.
Li
,
D.
,
Shen
,
R. Y.
,
Zhu
,
Q. Y.
,
Lu
,
L. Y.
,
Ding
,
H.
, and
Yang
,
X. Q.
, “
Flow field characteristics and vibration responses of saddle-shaped membrane structures
,”
Phys. Fluids.
36
,
107106
(
2024
).
13.
Li
,
Y.
,
Li
,
Z. L.
,
Savory
,
E.
,
Zhong
,
Y. L.
, and
Yan
,
Z. T.
, “
Wind tunnel measurement of overall and sectional drag coefficients for a super high-rise steel tube transmission tower
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104363
(
2020
).
14.
Li
,
Y.
,
Li
,
Z. L.
, and
Yan
,
B. W.
, “
Wind forces on circular steel tubular lattice structures with inclined leg members
,”
Eng. Struct.
153
,
254
(
2017
).
15.
Liang
,
S. G.
,
Zou
,
L. H.
,
Wang
,
D. H.
, and
Cao
,
H.
, “
Investigation on wind tunnel tests of a full aeroelastic model of electrical transmission tower-line system
,”
Eng. Struct.
85
,
63
(
2015
).
16.
Liu
,
J. H.
,
Ma
,
W. Y.
,
Jin
,
L. Q.
, and
Liu
,
Q.
, “
Large eddy simulation of end effects on a cylinder rotor
,”
Phys. Fluids.
36
,
024120
(
2024
).
17.
Liu
,
J. H.
,
Ma
,
W. Y.
,
Zheng
,
D. Q.
,
Jin
,
L. Q.
, and
Liu
,
Q.
, “
Numerical investigation of cylinder rotors with various endplates
,”
Phys. Fluids.
36
,
074101
(
2024
).
18.
Liu
,
M. G.
,
Pan
,
Y. P.
,
Hu
,
J. K.
,
Zhang
,
C. S.
,
Yu
,
X. F.
, and
Xie
,
Z. N.
, “
Field measurement study of intense thunderstorm outflows characteristics based on 356 m high meteorological tower
,”
J. Wind Eng. Ind. Aerodyn.
242
,
105590
(
2023
).
19.
Pezo
,
M. L.
and
Bakić
,
V. V.
, “
Numerical determination of drag coefficient for guyed mast exposed to wind action
,”
Eng. Struct.
62–63
,
98
(
2014
).
20.
Shen
,
G. H.
,
Que
,
L. H.
, and
Wan
,
H. P.
, “
Experimental study on the aerodynamic characteristics of combined angle transmission tower subject to skew wind
,”
Adv. Struct. Eng.
27
,
1016
(
2024
).
21.
Shen
,
G. H.
,
Yao
,
J. F.
,
Chen
,
Y.
,
Xu
,
H. W.
,
Lou
,
W. J.
, and
Guo
,
Y.
, “
Experimental study of wind loads on tubular crossarms of transmission towers
,”
J. Struct. Eng.
149
,
04022257
(
2023
).
22.
Simiu
,
E.
and
Yeo
,
D. H.
,
Wind Effects on Structures: Modern Structural Design for Wind
(
Wiley Online Library
,
2019
).
23.
Song
,
J.
,
Chen
,
W. L.
,
Hu
,
G.
, and
Zou
,
L. H.
, “
Wind loads on a square high-rise building under aerodynamic interference effects of a short building in close proximity
,”
Phys. Fluids.
36
,
075154
(
2024
).
24.
Stringer
,
R. M.
,
Zang
,
J.
, and
Hillis
,
A. J.
, “
Unsteady RANS computations of flow around a circular cylinder for a wide range of Reynolds numbers
,”
Ocean Eng.
87
,
1
(
2014
).
25.
Tapia-Hernández
,
E.
and
Cervantes-Castillo
,
J. A.
, “
Influence of the drag coefficient on communication towers
,”
Int. J. Civ. Eng.
16
,
499
(
2018
).
26.
Xie
,
Q.
,
Cai
,
Y. Z.
, and
Xue
,
S. T.
, “
Wind-induced vibration of UHV transmission tower line system: Wind tunnel test on aero-elastic model
,”
J. Wind Eng. Ind. Aerodyn.
171
,
219
(
2017
).
27.
Ye
,
J. C.
,
Niu
,
H. W.
,
Liu
,
G. B.
,
Yang
,
F. L.
,
Zhang
,
H. J.
, and
Chen
,
Z. Q.
, “
Experimental study of wind loads on tubular and tubular-angle steel cross-arms of transmission towers
,”
Phys. Fluids.
36
,
093606
(
2024
).
28.
Zhang
,
D. K.
,
Song
,
X. Q.
,
Deng
,
H. Z.
,
Hu
,
X. Y.
, and
Ma
,
X.
, “
Experimental and numerical study on the aerodynamic characteristics of steel tubular transmission tower bodies under skew winds
,”
J. Wind Eng. Ind. Aerodyn.
214
,
104678
(
2021
).
29.
Zhang
,
W. T.
,
Xiao
,
Y. Q.
,
Li
,
C.
,
Zheng
,
Q. X.
, and
Tang
,
Y. N.
, “
Wind load investigation of self-supported lattice transmission tower based on wind tunnel tests
,”
Eng. Struct.
252
,
113575
(
2022
).
30.
Zhou
,
Q.
,
Zhang
,
H. J.
,
Ma
,
B.
, and
Huang
,
Y.
, “
Wind loads on transmission tower bodies under skew winds with both yaw and tilt angles
,”
J. Wind Eng. Ind. Aerodyn.
187
,
48
(
2019
).
31.
Zhu
,
N. L.
,
Sparling
,
B.
, and
King
,
J. P. C.
, “
Comparison of aeroelastic wind tunnel tests and frequency domain analyses of guyed mast dynamic response
,”
Can. J. Civil Eng.
38
,
984
(
2011
).
32.
Zhu
,
Y. Z.
,
Chen
,
F. B.
,
Duan
,
Y. Q.
,
Li
,
Q. S.
, and
Li
,
Y.
, “
Effect of side ratio on the two-degrees-of-freedom vortex-induced vibrations of the rectangular cross section model
,”
Phys. Fluids.
36
,
105105
(
2024
).
You do not currently have access to this content.