High-energy particles in geosynchronous orbit (GEO) present significant hazards to astronauts and artificial satellites, particularly during extreme geomagnetic activity conditions. In the present study, based on observations onboard the GOES-15 (Geostationary Operational Environmental Satellites) spanning from 2011 to 2019 as well as the historical values of solar wind and geomagnetic activity indices, an artificial neural network model was established to predict the temporal evolution of the GEO sub-relativistic and relativistic (>0.8 MeV and >2 MeV) electron fluxes one day in advance. By adding the last-orbital observations of electron flux in each of all 24 different magnetic local times (MLTs) and its two MLT-adjacent values into inputs, the current model can provide accurate predictions with an MLT resolution of one hour for the first time. Moreover, it achieves the best performance in comparison with previous methods, with overall root mean square errors of 0.276 and 0.311, prediction efficiencies of 0.863 and 0.844, and Pearson correlation coefficients of 0.930 and 0.921 for >0.8 MeV and >2 MeV electrons, respectively. More than 99% of the samples exhibit an observation-prediction difference of less than one order of magnitude, while over 90% demonstrate a difference of less than 0.5 order. Further analysis revealed that it can precisely track the global variations of the electron flux during both quiet times and active conditions. The present model would be an important supplement for examining the temporospatial variations of inner magnetospheric particles and helping to establish a warning mechanism for space weather disaster events.

1.
D. N.
Baker
,
P. J.
Erickson
,
J. F.
Fennell
,
J. C.
Foster
,
A. N.
Jaynes
, and
P. T.
Verronen
, “
Space weather effects in the earth's radiation belts
,”
Space Sci. Rev
214
(
1
),
17
(
2018
).
2.
G. D.
Reeves
,
K. L.
McAdams
,
R. H. W.
Friedel
, and
T. P.
O'Brien
, “
Acceleration and loss of relativistic electrons during geomagnetic storms
,”
Geophys. Res. Lett.
30
(
10
),
1529
, https://doi.org/10.1029/2002GL016513 (
2003
).
3.
Y. Y.
Shprits
,
A. Y.
Drozdov
,
M.
Spasojevic
,
A. C.
Kellerman
,
M. E.
Usanova
,
M. J.
Engebretson
,
O. V.
Agapitov
,
I. S.
Zhelavskaya
,
T. J.
Raita
,
H. E.
Spence
,
D. N.
Baker
,
H.
Zhu
, and
N. A.
Aseev
, “
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
,”
Nat. Commun.
7
,
12883
(
2016
).
4.
V. K.
Jordanova
and
Y.
Miyoshi
, “
Relativistic model of ring current and radiation belt ions and electrons: Initial results
,”
Geophys. Res. Lett.
32
,
L14104
, https://doi.org/10.1029/2005GL023020 (
2005
).
5.
B.
Ni
,
Z.
Zou
,
X.
Li
,
J.
Bortnik
,
L.
Xie
, and
X.
Gu
, “
Occurrence characteristics of outer zone relativistic electron butterfly distribution: A survey of Van Allen Probes REPT measurements: Relativistic electron butterfly pads
,”
Geophys. Res. Lett.
43
(
11
),
5644
5652
, https://doi.org/10.1002/2016GL069350 (
2016
).
6.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
Z.
Gao
,
G.
Wang
,
Z.
Zhao
,
X.
Feng
, and
F.
Wei
, “
Two-step dropouts of radiation belt electron phase space density induced by a magnetic cloud event
,”
ApJL.
895
(
1
),
L24
(
2020
).
7.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
J.
Wei
,
W.
Zhou
,
H.
Huang
, and
Y.
Xie
, “
Competition between the source and loss processes of radiation belt source, seed, and relativistic electrons induced by a magnetic cloud event
,”
Phys. Fluids
36
(
2
),
026603
(
2024
).
8.
D. L.
Turner
,
E. K. J.
Kilpua
,
H.
Hietala
,
S. G.
Claudepierre
,
T. P.
O'Brien
,
J. F.
Fennell
,
J. B.
Blake
,
A. N.
Jaynes
,
S.
Kanekal
,
D. N.
Baker
,
H. E.
Spence
,
J.-F.
Ripoll
, and
G. D.
Reeves
, “
The response of earth's electron radiation belts to geomagnetic storms: Statistics from the Van Allen probes era including effects from different storm drivers
,”
JGR. Space Phys.
124
(
2
),
1013
1034
(
2019
).
9.
R. M.
Thorne
,
T. P.
O'Brien
,
Y. Y.
Shprits
,
D.
Summers
, and
R. B.
Horne
, “
Timescale for MeV electron microburst loss during geomagnetic storms
,”
J. Geophys. Res.
110
(
A9
),
A09202
, https://doi.org/10.1029/2004JA010882 (
2005
).
10.
Z.
Zou
,
P.
Zuo
,
B.
Ni
,
H.
Huang
,
J.
Hu
,
J.
Wei
,
Q.
Yuan
, and
W.
San
, “
Statistical analysis of the phase space density changes of radiation belt source, seed, and relativistic electrons in response to geomagnetic storms
,”
Phys. Fluids
36
(
3
),
36614
(
2024
).
11.
Z.
Zou
,
H.
Huang
,
J.
Hu
,
W.
San
, and
Q.
Yuan
, “
Prompt extinction of bump-on-tail energy spectra for radiation belt electron phase space density
,”
Phys. Fluids
36
(
5
),
56608
(
2024
).
12.
D. L.
Turner
,
Y.
Shprits
,
M.
Hartinger
, and
V.
Angelopoulos
, “
Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
,”
Nat. Phys.
8
(
3
),
208
212
(
2012
).
13.
X.
Li
, “
Simulation of the prompt energization and transport of radiation
,”
Geophys. Res. Lett.
20
,
2423
, https://doi.org/10.1029/93GL02701 (
1993
).
14.
Q. G.
Zong
,
Y. F.
Wang
,
H.
Zhang
,
S. Y.
Fu
,
H.
Zhang
,
C. R.
Wang
,
C. J.
Yuan
, and
I.
Vogiatzis
, “
Fast acceleration of inner magnetospheric hydrogen and oxygen ions by shock induced ULF waves
,”
J. Geophys. Res.
117
(
A11
),
A11206
, https://doi.org/10.1029/2012JA018024 (
2012
).
15.
Q.
Zong
,
Y.
Hao
, and
Y.
Wang
, “
Ultra low frequency waves impact on radiation belt energetic particles
,”
Sci. China Ser. E-Technol. Sci.
52
,
3698
3708
(
2009
).
16.
B.
Ni
,
Y.
Shprits
,
M.
Hartinger
,
V.
Angelopoulos
,
X.
Gu
, and
D.
Larson
, “
Analysis of radiation belt energetic electron phase space density using THEMIS SST measurements: Cross-satellite calibration and a case study
,”
J. Geophys. Res.
116
(
A3
),
A03208
, https://doi.org/10.1029/2010JA016104 (
2011
).
17.
B.
Ni
,
J.
Liang
,
R. M.
Thorne
,
V.
Angelopoulos
,
R. B.
Horne
,
M.
Kubyshkina
,
E.
Spanswick
,
E. F.
Donovan
, and
D.
Lummerzheim
, “
Efficient diffuse auroral electron scattering by electrostatic electron cyclotron harmonic waves in the outer magnetosphere: A detailed case study
,”
J. Geophys. Res.
117
(
A1
),
A01218
, https://doi.org/10.1029/2011JA017095 (
2012
).
18.
D.
Summers
,
B.
Ni
,
N. P.
Meredith
,
R. B.
Horne
,
R. M.
Thorne
,
M. B.
Moldwin
, and
R. R.
Anderson
, “
Electron scattering by whistler-mode ELF hiss in plasmaspheric plumes
,”
J. Geophys. Res. Space Phys
113
(
A4
),
A04219
, https://doi.org/10.1029/2007JA012678 (
2008
).
19.
X.
Cao
,
B.
Ni
,
D.
Summers
,
Z.
Zou
,
S.
Fu
, and
W.
Zhang
, “
Bounce resonance scattering of radiation belt electrons by low‐frequency hiss: comparison with cyclotron and landau resonances
,”
Geophys. Res. Lett.
44
(
19
),
9547
9554
, https://doi.org/10.1002/2017GL075104 (
2017
).
20.
J.
Bortnik
and
R. M.
Thorne
, “
The dual role of ELF/VLF chorus waves in the acceleration and precipitation of radiation belt electrons
,”
J. Atmos. Sol.-Terr. Phys.
69
(
3
),
378
386
(
2007
).
21.
X.
Li
,
M.
Temerin
,
D. N.
Baker
,
G. D.
Reeves
, and
D.
Larson
, “
Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements
,”
Geophys. Res. Lett.
28
(
9
),
1887
1890
, https://doi.org/10.1029/2000GL012681 (
2001
).
22.
W.
Lyatsky
and
G. V.
Khazanov
, “
A predictive model for relativistic electrons at geostationary orbit
,”
Geophys. Res. Lett.
35
(
15
),
L15108
, https://doi.org/10.1029/2008GL034688 (
2008
).
23.
D. L.
Turner
and
X.
Li
, “
Quantitative forecast of relativistic electron flux at geosynchronous orbit based on low-energy electron flux
,”
Space Weather
6
(
5
),
S05005
, https://doi.org/10.1029/2007SW000354 (
2008
).
24.
D.
Baker
,
R.
Mcpherron
,
T.
Cayton
, and
R.
Klebesadel
, “
Linear Prediction Filter Analysis of Relativistic Electron Properties at 6.6
,”
J. Geophys. Res.
95
(
A9
),
15133
15140
, https://doi.org/10.1029/JA095iA09p15133 (
1990
).
25.
E. J.
Rigler
,
D. N.
Baker
,
R. S.
Weigel
,
D.
Vassiliadis
, and
A. J.
Klimas
, “
Adaptive linear prediction of radiation belt electrons using the Kalman filter
,”
SPACE Weather. Int. J. Res. Appl.
2
(
3
),
S03003
(
2004
).
26.
L. E.
Simms
,
V.
Pilipenko
,
M. J.
Engebretson
,
G. D.
Reeves
,
A. J.
Smith
, and
M.
Clilverd
, “
Prediction of relativistic electron flux at geostationary orbit following storms: Multiple regression analysis
,”
J. Geophys. Res. Space Phys.
119
(
9
),
7297
7318
(
2014
).
27.
L. E.
Simms
,
M. J.
Engebretson
,
V.
Pilipenko
,
G. D.
Reeves
, and
M.
Clilverd
, “
Empirical predictive models of daily relativistic electron flux at geostationary orbit: Multiple regression analysis
,”
JGR. Space Phys.
121
(
4
),
3181
3197
(
2016
).
28.
L.
Simms
,
M.
Engebretson
,
M.
Clilverd
,
C.
Rodger
,
M.
Lessard
,
J.
Gjerloev
, and
G.
Reeves
, “
A distributed lag autoregressive model of geostationary relativistic electron fluxes: Comparing the influences of waves, seed and source electrons, and solar wind inputs
,”
JGR. Space Phys.
123
(
5
),
3646
3671
(
2018
).
29.
M. A.
Balikhin
,
R. J.
Boynton
,
S. N.
Walker
,
J. E.
Borovsky
,
S. A.
Billings
, and
H. L.
Wei
, “
Using the NARMAX approach to model the evolution of energetic electrons fluxes at geostationary orbit
,”
Geophys. Res. Lett.
38
,
L18105
, https://doi.org/10.1029/2011GL048980 (
2011
).
30.
R. J.
Boynton
,
M. A.
Balikhin
,
S. A.
Billings
,
G. D.
Reeves
,
N.
Ganushkina
,
M.
Gedalin
,
O. A.
Amariutei
,
J. E.
Borovsky
, and
S. N.
Walker
, “
The analysis of electron fluxes at geosynchronous orbit employing a NARMAX approach
,”
JGR. Space Phys.
118
(
4
),
1500
1513
(
2013
).
31.
R. J.
Boynton
,
M. A.
Balikhin
, and
S. A.
Billings
, “
Online NARMAX model for electron fluxes at GEO
,”
Ann. Geophys.
33
(
3
),
405
411
(
2015
).
32.
S.
Liu
,
Z.
Li
, and
R.
Lin
, “
Study of the energetic electron fluxes at geostationary orbit with a time-varying NARMAX method
,” in
2015 2ND Int. Conf. Comput. Commun. CONTROL Technol. I4CT
, edited by
H. A.
BinSulaiman
(
IEEE
,
New York
,
2015
).
33.
I. P.
Pakhotin
,
A. Y.
Drozdov
,
Y. Y.
Shprits
,
R. J.
Boynton
,
D. A.
Subbotin
, and
M. A.
Balikhin
, “
Simulation of high-energy radiation belt electron fluxes using NARMAX-VERB coupled codes
,”
J. Geophys. Res. Space Phys.
119
(
10
),
8073
8086
(
2014
).
34.
H.
Koons
and
D.
Gorney
, “
A neural network model of the relativistic electron flux at geosynchronous orbit
,”
J. Geophys. Res. Space Phys.
96
(
A4
),
5549
5556
(
1991
).
35.
M.
Fukata
,
S.
Taguchi
,
T.
Okuzawa
, and
T.
Obara
, “
Neural network prediction of relativistic electrons at geosynchronous orbit during the storm recovery phase: Effects of recurring substorms
,”
Ann. Geophys.
20
(
7
),
947
951
(
2002
).
36.
D.-K.
Shin
,
D.-Y.
Lee
,
K.-C.
Kim
,
J.
Hwang
, and
J.
Kim
, “
Artificial neural network predictionmodel for geosynchronous electron fluxes: Dependence on satellite position and particle energy
,”
SPACE Weather. Int. J. Res. Appl
14
(
4
),
313
321
(
2016
).
37.
T.
Yeeram
, “
A neural network forecasting of relativistic electron flux at geostationary orbit: Solar activity phase dependence
,”
J. Phys: Conf. Ser.
1593
(
1
),
12026
(
2020
).
38.
H.
Zhang
,
S.
Fu
,
L.
Xie
,
D.
Zhao
,
C.
Yue
,
Z.
Pu
,
Y.
Xiong
,
T.
Wu
,
S.
Zhao
,
Y.
Sun
,
B.
Cui
, and
Z.
Luo
, “
Relativistic electron flux prediction at geosynchronous orbit based on the neural network and the quantile regression method
,”
SPACE Weather. Int. J. Res. Appl
18
(
9
),
e2020SW002445
(
2020
).
39.
J.
Wang
,
D.
Guo
,
Z.
Xiang
,
B.
Ni
,
Y.
Liu
, and
J.
Dong
, “
Prediction of geosynchronous electron fluxes using an artificial neural network driven by solar wind parameters
,”
Adv. Space Res.
71
(
1
),
275
285
(
2023
).
40.
Z. Y.
Zou
,
Y. Y.
Shprits
,
B. B.
Ni
,
N. A.
Aseev
,
P. B.
Zuo
, and
F. S.
Wei
, “
An artificial neural network model of electron fluxes in the Earth's central plasma sheet: A THEMIS survey
,”
Astrophys. Space Sci.
365
(
6
),
100
(
2020
).
41.
Z.
Zou
,
H.
Huang
,
P.
Zuo
,
B.
Ni
,
W.
San
,
Q.
Yuan
,
J.
Hu
, and
J.
Wei
, “
A forecast model of geomagnetic indices from the solar wind fluids observations based on long short-term memory neural network
,”
Phys. Fluids
36
(
2
),
26616
(
2024
).
42.
X.
Chu
,
D.
Ma
,
J.
Bortnik
,
W. K.
Tobiska
,
A.
Cruz
,
S. D.
Bouwer
,
H.
Zhao
,
Q.
Ma
,
K.
Zhang
,
D. N.
Baker
,
X.
Li
,
H.
Spence
, and
G.
Reeves
, “
Relativistic electron model in the outer radiation belt using a neural network approach
,”
SPACE Weather. Int. J. Res. Appl.
19
(
12
),
e2021SW002808
(
2021
).
You do not currently have access to this content.