As railway transportation advances toward higher speeds, traditional passive measures may struggle to meet the stringent aerodynamic criteria in tunnels, necessitating the exploration of novel active flow control techniques. This study employs three-dimensional, compressible, unsteady Reynolds-averaged Navier–Stokes simulations to investigate the aerodynamic effects of the suction and blowing slit area (S) positioned on the front and rear noses of the train. The results indicate that suction and blowing activation is particularly effective in alleviating pressure on the narrower side of the tunnel. Specifically, with a 4 m2 slit, the original 4.8% pressure difference between symmetrical points on the train body is fully eliminated. The influence of suction and blowing on the positive pressures is confined to the front and rear noses where the slits are located. Notably, only suction at the front nose mitigates pressure gradients, while blowing at the rear is unrelated. The peak-to-peak pressure (ΔP) on both the train surface and tunnel wall exhibits a linear decline, with reductions of 17.4% and 16.6%, respectively, as S increases from 0 to 4 m2. Similarly, the slipstreams on both sides of the tunnel decrease linearly with increasing slit area: with u/Umax = −0.008S + 0.24 for the near side, and u/Umin = 0.014S − 0.265 for the far side. Additionally, expanding the slit area further boosts the stability and safety of the train during tunnel exit by reducing lateral forces and rolling moments, while also decreasing overall drag, thereby partially compensating for the energy input. Although the maximum lift on the head car increases with slit area, the lift on the tail car initially rises and then decreases, helping to mitigate instability upon tunnel exit. Overall, the hybrid suction and blowing technique offers promising potential for enhancing the tunnel aerodynamics in the future.

1.
BS EN 14067-5
,
Railway Applications—Aerodynamics—Part 5. Requirements and Test Procedures for Aerodynamics in Tunnels
(
British Standards Institution
,
London
,
2018
).
2.
Baron
,
A.
,
Molteni
,
P.
, and
Vigevano
,
L.
, “
High-speed trains: Prediction of micro-pressure wave radiation from tunnel portals
,”
J. Sound Vib.
296
(
1–2
),
59
72
(
2006
).
3.
Che
,
Z. X.
,
Chen
,
Z. W.
,
Ni
,
Y. Q.
,
Huang
,
S.
, and
Li
,
Z. W.
, “
Research on the impact of air-blowing on aerodynamic drag reduction and wake characteristics of a high-speed maglev train
,”
Phys. Fluids
35
(
11
),
115138
(
2023b
).
4.
Che
,
Z. X.
,
Huang
,
S.
,
Li
,
Z. W.
, and
Chen
,
Z. W.
, “
Aerodynamic drag reduction of high-speed maglev train based on air blowing/suction
,”
J. Wind Eng. Ind Aerodyn.
233
,
105321
(
2023a
).
5.
Chen
,
X. D.
,
Liu
,
T. H.
,
Zhou
,
X. S.
,
Li
,
W. H.
,
Xie
,
T. Z.
, and
Chen
,
Z. W.
, “
Analysis of the aerodynamic effects of different nose lengths on two trains intersecting in a tunnel at 350 km/h
,”
Tunnelling Underground Space Technol.
66
,
77
90
(
2017
).
6.
Chen
,
Z. W.
,
Guo
,
Z. J.
,
Che
,
Z. X.
,
Huang
,
Z. D.
,
Ni
,
Y. Q.
,
Wang
,
S. M.
,
Huang
,
S.
,
Li
,
Z.-W.
, and
Wang
,
Q. X.
, “
Evaluation of active leeward side air-blowing layout on the lateral aerodynamic performance of high-speed trains in crosswinds environment: Sustainable and safe operation strategy
,”
J. Wind Eng. Ind Aerodyn.
247
,
105695
(
2024
).
7.
Chen
,
Z. W.
,
Guo
,
Z. H.
,
Ni
,
Y. Q.
,
Liu
,
T. H.
, and
Zhang
,
J.
, “
A suction method to mitigate pressure waves induced by high-speed maglev trains passing through tunnels
,”
Sustainable Cities Soc.
96
,
104682
(
2023a
).
8.
Chen
,
Z. W.
,
Zeng
,
G. Z.
,
Ni
,
Y. Q.
,
Liu
,
T. H.
,
Niu
,
J. Q.
, and
Yao
,
H. D.
, “
Reducing the aerodynamic drag of high-speed trains by air blowing from the nose part: Effect of blowing speed
,”
J. Wind Eng. Ind Aerodyn.
238
,
105429
(
2023b
).
9.
Chu
,
C. R.
,
Chien
,
S. Y.
,
Wang
,
C. Y.
, and
Wu
,
T. R.
, “
Numerical simulation of two trains intersecting in a tunnel
,”
Tunnelling Underground Space Technol.
42
,
161
174
(
2014
).
10.
Cross
,
D.
,
Hughes
,
B.
,
Ingham
,
D.
, and
Ma
,
L.
, “
A validated numerical investigation of the effects of high blockage ratio and train and tunnel length upon underground railway aerodynamics
,”
J. Wind Eng. Ind Aerodyn.
146
,
195
206
(
2015
).
11.
Cui
,
H.
,
Chen
,
G.
,
Guan
,
Y.
, and
Deng
,
W.
, “
Study on aerodynamic drag reduction at tail of 400 km/h EMU with air suction-blowing combination
,”
Machines
11
(
2
),
222
(
2023
).
12.
Du
,
J.
,
Fang
,
Q.
,
Wang
,
G.
,
Zhang
,
D.
, and
Chen
,
T.
, “
Fatigue damage and residual life of secondary lining of high-speed railway tunnel under aerodynamic pressure wave
,”
Tunnelling Underground Space Technol.
111
,
103851
(
2021
).
13.
Fang
,
F. Y.
,
Liu
,
T. H.
,
Xia
,
Y. T.
,
Xu
,
B.
,
Wang
,
X. R.
,
Huo
,
X. S.
,
Gao
,
H. R.
,
Liang
,
G. P.
, and
Li
,
W. H.
, “
Aerodynamic effects of trains circulating through a bifurcated tunnel
,”
J. Cent. South Univ.
31
(
3
),
1017
1031
(
2024
).
14.
Guo
,
Z. J.
,
Guo
,
Z. H.
,
Chen
,
Z. W.
,
Zeng
,
G. Z.
, and
Xu
,
J. Q.
, “
On the active flow control in maglev train safety under crosswinds: Analysis of leeward suction and blowing action
,”
Phys. Fluids
36
(
9
),
095130
(
2024
).
15.
Han
,
S.
,
Zhang
,
J.
,
Xiong
,
X.
,
Ji
,
P.
,
Zhang
,
L.
,
Sheridan
,
J.
, and
Gao
,
G.
, “
Influence of high-speed maglev train speed on tunnel aerodynamic effects
,”
Build. Environ.
223
,
109460
(
2022
).
16.
Howe
,
M. S.
,
Iida
,
M.
,
Fukuda
,
T.
, and
Maeda
,
T.
, “
Theoretical and experimental investigation of the compression wave generated by a train entering a tunnel with a flared portal
,”
J. Fluid Mech.
425
,
111
132
(
2000
).
17.
Howe
,
M. S.
,
Iida
,
M.
, and
Fukuda
,
T.
, “
Influence of an unvented tunnel entrance hood on the compression wave generated by a high-speed train
,”
J. Fluids Struct.
17
(
6
),
833
853
(
2003
).
18.
Ikeda
,
M.
,
Yoshida
,
K.
, and
Suzuki
,
M.
, “
A flow control technique utilizing air blowing to modify the aerodynamic characteristics of pantograph for high-speed train
,”
J. Mech. Syst. Transp. Logistic
1
(
3
),
264
271
(
2008
).
19.
Jiang
,
Z.
,
Liu
,
T.
,
Chen
,
X.
,
Li
,
W.
,
Guo
,
Z.
, and
Niu
,
J.
, “
Numerical prediction of the slipstream caused by the trains with different marshalling forms entering a tunnel
,”
J. Wind Eng. Ind Aerodyn.
189
,
276
288
(
2019
).
20.
Jin
,
K.
,
Zhang
,
L.
,
Li
,
X.
,
Li
,
L.
,
Chen
,
J.
,
Wang
,
J.
, and
Niu
,
J.
, “
Effect of characteristic parameters of air-bleeding/blowing interface on tunnel pressure waves in streamlined regions of high-speed trains: A numerical simulation study
,”
Sustainable Cities Soc.
102
,
105222
(
2024
).
21.
Kim
,
D. H.
,
Cheol
,
S. Y.
,
Iyer
,
R. S.
, and
Kim
,
H. D.
, “
A newly designed entrance hood to reduce the micro pressure wave emitted from the exit of high-speed railway tunnel
,”
Tunnelling Underground Space Technol.
108
,
103728
(
2021
).
22.
Ko
,
Y. Y.
,
Chen
,
C. H.
,
Hoe
,
T.
, and
Wang
,
S. T.
, “
Field measurements of aerodynamic pressures in tunnels induced by high speed trains
,”
J. Wind Eng. Ind Aerodyn.
100
(
1
),
19
29
(
2012
).
23.
Li
,
W.
,
Liu
,
T.
,
Martinez-Vazquez
,
P.
,
Chen
,
Z.
,
Guo
,
Z.
,
Li
,
M.
,
Xia
,
Y.
, and
Liu
,
H.
, “
Aerodynamic effects of a high-speed train travelling through adjoining & separated tunnels
,”
Tunnelling Underground Space Technol.
113
,
103973
(
2021
).
24.
Li
,
W.
,
Liu
,
T.
,
Huo
,
X.
,
Chen
,
Z.
,
Guo
,
Z.
, and
Li
,
L.
, “
Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion
,”
J. Wind Eng. Ind Aerodyn.
190
,
10
22
(
2019
).
25.
Li
,
Y.
and
Liu
,
Y.
, “
Development of a forward design method for train airtightness: A case study of a metro express line
,”
Tunnelling Underground Space Technol.
144
,
105479
(
2024
).
26.
Liu
,
T. H.
,
Chen
,
Z. W.
,
Chen
,
X. D.
,
Xie
,
T. Z.
, and
Zhang
,
J.
, “
Transient loads and their influence on the dynamic responses of trains in a tunnel
,”
Tunnelling Underground Space Technol.
66
,
121
133
(
2017
).
27.
Liu
,
Z.
,
Zhou
,
D.
,
Soper
,
D.
,
Chen
,
G.
,
Hemida
,
H.
,
Guo
,
Z.
, and
Li
,
X.
, “
Numerical investigation of the slipstream characteristics of a maglev train in a tunnel
,”
Proc. Inst. Mech. Eng., Part F
237
(
2
),
179
192
(
2023
).
28.
Lu
,
Y.
,
Zhang
,
D.
,
Zheng
,
H.
,
Lu
,
C.
,
Chen
,
T.
,
Zeng
,
J.
, and
Wu
,
P.
, “
Analysis of the aerodynamic pressure effect on the fatigue strength of the carbody of high-speed trains passing by each other in a tunnel
,”
Proc. Inst. Mech. Eng., Part F
233
(
8
),
783
801
(
2019
).
29.
Ma
,
Y.
,
Liu
,
T.
,
Xia
,
Y.
,
Gao
,
H.
,
Xu
,
B.
,
Chen
,
X.
,
Guo
,
Z.
, and
Li
,
W.
, “
Comparative research of the effect of the unilateral vertical slope at tunnel portals on aerodynamic performances of trains
,”
J. Wind Eng. Ind Aerodyn.
251
,
105810
(
2024
).
30.
Niu
,
J.
,
Lv
,
D.
,
Li
,
R.
,
Zhou
,
D.
,
Wang
,
Y.
, and
Yang
,
X.
, “
Matching of multiple aerodynamic parameters for railway train/tunnel systems to ensure critical airtightness performance of high-speed trains
,”
Struct. Multidiscip. Optim.
66
(
1
),
4
(
2023
).
31.
Okubo
,
H.
,
Miyachi
,
T.
, and
Sugiyama
,
K.
, “
Pressure fluctuation and a micro-pressure wave in a high-speed railway tunnel with large branch shaft
,”
J. Wind Eng. Ind Aerodyn.
217
,
104751
(
2021
).
32.
Raghunathan
,
R. S.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
, “
Aerodynamics of high-speed railway train
,”
Prog. Aerosp. Sci.
38
(
6–7
),
469
514
(
2002
).
33.
Ricco
,
P.
,
Baron
,
A.
, and
Molteni
,
P.
, “
Nature of pressure waves induced by a high-speed train travelling through a tunnel
,”
J. Wind Eng. Ind Aerodyn.
95
(
8
),
781
808
(
2007
).
34.
Schatzman
,
D.
,
Wilson
,
J.
,
Arad
,
E.
,
Seifert
,
A.
, and
Shtendel
,
T.
, “
Drag-reduction mechanisms of suction-and-oscillatory-blowing flow control
,”
AIAA J.
52
(
11
),
2491
2505
(
2014
).
35.
Srivastava
,
S.
,
Sivasankar
,
G.
, and
Dua
,
G.
, “
A review of research into aerodynamic concepts for high speed trains in tunnels and open air and the air-tightness requirements for passenger comfort
,”
Proc. Inst. Mech. Eng., Part F
236
(
9
),
1011
1025
(
2022
).
36.
Suzuki
,
M.
and
Nakade
,
K.
, “
A basic study on countermeasure against aerodynamic force acting on train running inside tunnel using air blowing
,”
J. Mech. Syst. Transp. Logistic
3
(
1
),
92
99
(
2010
).
37.
Vardy
,
A. E.
and
Brown
,
J. M. B.
, “
Influence of ballast on wave steepening in tunnels
,”
J. Sound Vib.
238
(
4
),
595
615
(
2000
).
38.
Wang
,
J.
,
Wang
,
T.
,
Wang
,
Y.
,
Wen
,
C.
,
Zhang
,
L.
, and
Sun
,
Z.
, “
Prediction and sensitivity analysis of the pressure wave peak value induced by the high-speed train in the long tunnel under a high geothermal environment
,”
Phys. Fluids
36
(
8
),
086106
(
2024a
).
39.
Wang
,
K. W.
,
Chen
,
G.
,
Wen
,
C. Y.
,
Xiong
,
X. H.
,
Liang
,
X. F.
, and
Zhang
,
L.
, “
Mitigation mechanism of porous media hood for the sonic boom emitted from maglev tunnel portals
,”
Phys. Fluids
36
(
10
),
106134
(
2024b
).
40.
Wang
,
T.
,
Zhu
,
Y.
,
Tian
,
X.
,
Shi
,
F.
,
Zhang
,
L.
, and
Lu
,
Y.
, “
Design method of the variable cross-section tunnel focused on improving passenger pressure comfort of trains intersecting in the tunnel
,”
Build. Environ.
221
,
109336
(
2022
).
41.
Wilson
,
J.
,
Schatzman
,
D.
,
Arad
,
E.
,
Seifert
,
A.
, and
Shtendel
,
T.
, “
Suction and pulsed-blowing flow control applied to an axisymmetric body
,”
AIAA J.
51
(
10
),
2432
2446
(
2013
).
42.
Wu
,
Z.
and
Choi
,
H.
, “
Modification of flow behind a circular cylinder by steady and time-periodic blowing
,”
Phys. Fluids
33
(
11
),
115126
(
2021
).
43.
Xia
,
Y.
,
Liu
,
T.
,
Chen
,
X.
,
Su
,
X.
,
Chen
,
Z.
,
Guo
,
Z.
,
Zhou
,
L.
, and
Krajnović
,
S.
, “
Investigation of the dynamic airtightness coefficient of high-speed trains traveling through a tunnel: A field study
,”
J. Wind Eng. Ind Aerodyn.
236
,
105395
(
2023
).
44.
Xiang
,
X.
,
Xue
,
L.
,
Wang
,
B.
, and
Zou
,
W.
, “
Mechanism and capability of ventilation openings for alleviating micro-pressure waves emitted from high-speed railway tunnels
,”
Build. Environ.
132
,
245
254
(
2018
).
45.
Xie
,
P.
,
Peng
,
Y.
,
Wang
,
T.
,
Wu
,
Z.
,
Yao
,
S.
,
Yang
,
M.
, and
Yi
,
S.
, “
Aural comfort prediction method for high-speed trains under complex tunnel environments
,”
Transp. Res., Part D
81
,
102284
(
2020
).
46.
Yang
,
L.
,
Chen
,
C.
,
Wang
,
X.
,
Deng
,
J.
, and
Zheng
,
Q.
, “
Internal pressure fluctuation modelling and passenger pressure comfort analysis of high-speed trains passing through extreme tunnels
,”
Build. Environ.
251
,
111200
(
2024
).
47.
Zhang
,
J.
,
Guo
,
B.
,
Wang
,
Y.
,
Chen
,
X.
, and
Liu
,
T.
, “
Influence of arch lattice-shell hood length on micro-pressure waves at portal of a high-speed maglev tunnel
,”
Phys. Fluids
36
(
9
),
096105
(
2024
).
48.
Zhang
,
N.
,
Lu
,
Z.
, and
Zhou
,
D.
, “
Influence of train speed and blockage ratio on the smoke characteristics in a subway tunnel
,”
Tunnelling Underground Space Technol.
74
,
33
40
(
2018
).
You do not currently have access to this content.