Evacuated tube maglev train (ETMT) system aims to advance ultra-high-speed transportation, featuring unique high-speed flow phenomena and complex shockwave dynamics in low-pressure environments that demand further exploration. This paper examines the flow structures and aerodynamic loads of the ETMT over a range of Mach numbers from 0.8 to 2.0. Leveraging a compressible, density-based solver based on the Advection Upstream Splitting Method, extensive numerical simulations of the ETMT were conducted across transonic and supersonic regimes, revealing diverse aerodynamic characteristics under varying operational conditions. The research delineates how aerodynamic properties distinctively shift with operating Mach numbers. In supersonic conditions, distinct shockwave effects emerge prominently, and as the train's velocity escalates, there is a consistent reduction in overall drag and lift coefficients, resulting in a net reduction of 32% in the total train drag coefficient (a most economical Mach number of 1.8) and the lift diminished by 38%. However, notable disparities exist in the drag and lift coefficients among different train sections. These insights are instrumental in understanding the aerodynamic behavior of tube trains at ultra-high speeds and serve as a crucial guide for the train's exterior design.

1.
H.-W.
Lee
,
K.-C.
Kim
, and
L.
Ju
, “
Review of maglev train technologies
,”
IEEE Trans. Magn.
42
,
1917
(
2006
).
2.
Z.-J.
Guo
,
Z.-H.
Guo
,
Z.-W.
Chen
,
G.-Z.
Zeng
, and
J.-Q.
Xu
, “
On the active flow control in maglev train safety under crosswinds: Analysis of leeward suction and blowing action
,”
Phys. Fluids
36
,
095130
(
2024
).
3.
K.
van Goeverden
,
D.
Milakis
,
M.
Janic
, and
R.
Konings
, “
Analysis and modelling of performances of the HL (Hyperloop) transport system
,”
Eur. Transp. Res. Rev.
10
,
41
(
2018
).
4.
M.
Janić
, “
Estimation of direct energy consumption and CO2 emission by high speed rail, transrapid maglev and hyperloop passenger transport systems
,”
Int. J. Sustainable Transp.
15
,
696
(
2021
).
5.
Q. L.
Li
,
W. G.
Jia
,
C. G.
Dong
, and
R. X.
Duan
, “
Numerical research of thermal-pressure coupling effect on blockage ratio in the evacuated tude transportation system
,”
Key Eng. Mater.
561
,
454
(
2013
).
6.
Z.
Deng
,
W.
Zhang
,
J.
Zheng
,
B.
Wang
,
Y.
Ren
,
X.
Zheng
, and
J.
Zhang
, “
A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system
,”
IEEE Trans. Appl. Supercond.
27
,
1
(
2017
).
7.
T.
Goudon
,
P.
Lafitte
, and
C.
Mascia
, “
Shock profiles for hydrodynamic models for fluid-particles flows in the flowing regime
,”
Phys. D
470
,
134357
(
2024
).
8.
Z.-J.
Guo
,
Z.-W.
Chen
,
Z.-X.
Che
,
A.
Bordbar
, and
Y.-Q.
Ni
, “
Using leeward air-blowing to alleviate the aerodynamic lateral impact of trains at diverse yaw angles
,”
Phys. Fluids
36
,
045121
(
2024
).
9.
G.-Z.
Zeng
,
Z.-W.
Chen
,
Y.-Q.
Ni
, and
E.-Z.
Rui
, “
Investigating embedded data distribution strategy on reconstruction accuracy of flow field around the crosswind-affected train based on physics-informed neural networks
,”
Int. J. Numer. Methods Heat Fluid Flow
34
,
2963
(
2024
).
10.
Z. W.
Chen
,
Z. H.
Guo
,
Y. Q.
Ni
,
Z. J.
Guo
,
T. T.
Wang
,
E. Z.
Rui
, and
G. Z.
Zeng
, “
Parametric investigation of suction actuators on the tunnel wall for alleviating pressure interactions in high-speed maglev train/tunnel system,
Tunnelling Underground Space Technol.
156
,
106239
(
2025
).
11.
X.
Chen
,
S.
Zhong
,
T.
Liu
,
J.
Zhang
,
O.
Ozer
, and
G.
Gao
, “
Experimental study on the synergy of sweeping jets on the afterbody flows of a slanted-base cylinder
,”
Aerosp. Sci. Technol.
148
,
109096
(
2024
).
12.
S. A.
Gillani
,
V. P.
Panikulam
,
S.
Sadasivan
, and
Z.
Yaoping
, “
CFD analysis of aerodynamic drag effects on vacuum tube trains
,”
J. Appl. Fluid Mech.
12
,
303
(
2019
).
13.
Y.
Seo
,
M.
Cho
,
D. H.
Kim
,
T.
Lee
,
J.
Ryu
, and
C.
Lee
, “
Experimental analysis of aerodynamic characteristics in the Hyperloop system
,”
Aerosp. Sci. Technol.
137
,
108265
(
2023
).
14.
Z.
Hou
,
Y.
Zhu
,
J.
Bo
, and
J.
Yang
, “
A quasi-one-dimensional study on global characteristics of tube train flows
,”
Phys. Fluids
34
,
026104
(
2022
).
15.
Z.-W.
Chen
,
Z.-H.
Guo
,
Y.-Q.
Ni
,
T.-H.
Liu
, and
J.
Zhang
, “
A suction method to mitigate pressure waves induced by high-speed maglev trains passing through tunnels
,”
Sustainable Cities Soc.
96
,
104682
(
2023
).
16.
Y.
Sui
,
J.
Niu
,
P.
Ricco
,
Y.
Yuan
,
Q.
Yu
,
X.
Cao
, and
X.
Yang
, “
Impact of vacuum degree on the aerodynamics of a high-speed train capsule running in a tube
,”
Int. J. Heat Fluid Flow
88
,
108752
(
2021
).
17.
R.
Li
,
D.
Soper
,
J.
Xu
,
Y.
Jia
,
J.
Niu
, and
H.
Hemida
, “
A separated-flow model for 2-D viscous flows around bluff bodies using the panel method
,”
Appl. Sci.
12
,
9652
(
2022
).
18.
Z.-W.
Chen
,
E.-Z.
Rui
,
T.-H.
Liu
,
Y.-Q.
Ni
,
X.-S.
Huo
,
Y.-T.
Xia
,
W.-H.
Li
,
Z.-J.
Guo
, and
L.
Zhou
, “
Unsteady aerodynamic characteristics of a high-speed train induced by the sudden change of windbreak wall structure: A case study of the Xinjiang Railway
,”
Appl. Sci.
12
,
7217
(
2022
).
19.
X.
Li
,
G.
Chen
,
D.
Zhou
, and
Z.
Chen
, “
Impact of different nose lengths on flow-field structure around a high-speed train
,”
Appl. Sci.
9
,
4573
(
2019
).
20.
Q.
Yu
,
X.
Yang
,
J.
Niu
,
Y.
Sui
,
Y.
Du
, and
Y.
Yuan
, “
Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system
,”
Aerosp. Sci. Technol.
121
,
107367
(
2022
).
21.
S.
Zhong
,
B.
Qian
,
M.
Yang
,
F.
Wu
,
T.
Wang
,
C.
Tan
, and
J.
Ma
, “
Investigation on flow field structure and aerodynamic load in vacuum tube transportation system
,”
J. Wind Eng. Ind Aerodyn.
215
,
104681
(
2021
).
22.
K. S.
Jang
,
T. T. G.
Le
,
J.
Kim
,
K.-S.
Lee
, and
J.
Ryu
, “
Effects of compressible flow phenomena on aerodynamic characteristics in Hyperloop system
,”
Aerosp. Sci. Technol.
117
,
106970
(
2021
).
23.
M.
Bizzozero
,
Y.
Sato
, and
M. A.
Sayed
, “
Aerodynamic study of a Hyperloop pod equipped with compressor to overcome the Kantrowitz limit
,”
J. Wind Eng. Ind Aerodyn.
218
,
104784
(
2021
).
24.
K.
Zhou
,
G.
Ding
,
Y.
Wang
, and
J.
Niu
, “
Aeroheating and aerodynamic performance of a transonic hyperloop pod with radial gap and axial channel: A contrastive study
,”
J. Wind Eng. Ind Aerodyn.
212
,
104591
(
2021
).
25.
X.
Hu
,
Z.
Deng
,
J.
Zhang
, and
W.
Zhang
, “
Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation
,”
J. Fluids Struct.
107
,
103413
(
2021
).
26.
W.
Jia
,
K.
Wang
,
A.
Cheng
,
X.
Kong
,
X.
Cao
, and
Q.
Li
, “
Air flow and differential pressure characteristics in the vacuum tube transportation system based on pressure recycle ducts
,”
Vacuum
150
,
58
(
2018
).
27.
J.
Niu
,
Y.
Sui
,
Y.
Qiujun
,
C.
Xiaoling
,
Y.
Yanping
, and
Y.
Xiaofeng
, “
Effect of acceleration and deceleration of a capsule train running at transonic speed on the flow and heat transfer in the tube
,”
Aerosp. Sci. Technol.
105
,
105977
(
2020
).
28.
P.
Zhou
,
J.
Zhang
,
T.
Li
, and
W.
Zhang
, “
Numerical study on wave phenomena produced by the super high-speed evacuated tube maglev train
,”
J. Wind Eng. Ind Aerodyn.
190
,
61
(
2019
).
29.
I.
Ali
,
S.
Becker
,
J.
Utzmann
, and
C.-D.
Munz
, “
Aeroacoustic study of a forward facing step using linearized Euler equations
,”
Phys. D
237
,
2184
(
2008
).
30.
X.
Hu
,
Z.
Deng
, and
W.
Zhang
, “
Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation
,”
J. Wind Eng. Ind Aerodyn.
211
,
104562
(
2021
).
31.
J.-S.
Oh
,
T.
Kang
,
S.
Ham
,
K.-S.
Lee
,
Y.-J.
Jang
,
H.-S.
Ryou
, and
J.
Ryu
, “
Numerical analysis of aerodynamic characteristics of hyperloop system
,”
Energies
12
,
518
(
2019
).
32.
Z.
Guo
,
X.
Chen
,
T.
Liu
,
Z.
Chen
, and
A.
Bordbar
, “
Turbulence approaches for numerical predictions of vehicle-like afterbody vortex flows
,”
Int. J. Mech. Sci.
283
,
109667
(
2024
).
33.
S.
Alzhrani
,
M. M.
Abdulla
,
K.
Juhany
, and
I.
AlQadi
, “
Numerical investigation of jet-propelled multiple-vehicle hyperloop system considering the suspension gap
,”
Sustainability
16
,
9465
(
2024
).
34.
P.
Zhou
and
J.
Zhang
, “
Aerothermal mechanisms induced by the super high-speed evacuated tube maglev train
,”
Vacuum
173
,
109142
(
2020
).
35.
Y.
Sui
,
J.
Niu
,
Y.
Yuan
,
Q.
Yu
,
X.
Cao
,
D.
Wu
, and
X.
Yang
, “
An aerothermal study of influence of blockage ratio on a supersonic tube train system
,”
J. Therm. Sci.
31
,
529
(
2022
).
36.
S.
Bao
,
X.
Hu
,
J.
Wang
,
T.
Ma
,
Y.
Rao
, and
Z.
Deng
, “
Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system
,”
Adv. Aerodyn.
2
,
28
(
2020
).
37.
T.-K.
Kim
,
K.-H.
Kim
, and
H.-B.
Kwon
, “
Aerodynamic characteristics of a tube train
,”
J. Wind Eng. Ind Aerodyn.
99
,
1187
(
2011
).
38.
Z.-W.
Chen
,
G.-Z.
Zeng
,
Y.-Q.
Ni
,
T.-H.
Liu
,
J.-Q.
Niu
, and
H. D.
Yao
, “
Reducing the aerodynamic drag of high-speed trains by air blowing from the nose part: Effect of blowing speed
,”
J. Wind Eng. Ind Aerodyn.
238
,
105429
(
2023
).
39.
X.-S.
Huo
,
T.-H.
Liu
,
Z.-W.
Chen
,
W.-H.
Li
,
J.-Q.
Niu
, and
H.-R.
Gao
, “
Aerodynamic characteristics of double-connected train groups composed of different kinds of high-speed trains under crosswinds: A comparison study
,”
Alexandria Eng. J.
64
,
465
(
2023
).
40.
J.
Niu
,
Y.
Sui
,
Q.
Yu
,
X.
Cao
, and
Y.
Yuan
, “
Numerical study on the impact of Mach number on the coupling effect of aerodynamic heating and aerodynamic pressure caused by a tube train
,”
J. Wind Eng. Ind Aerodyn.
190
,
100
(
2019
).
41.
T. T. G.
Le
,
K. S.
Jang
,
K.-S.
Lee
, and
J.
Ryu
, “
Numerical investigation of aerodynamic drag and pressure waves in hyperloop systems
,”
Mathematics
8
,
1973
(
2020
).
42.
M. J.
Colbrook
, “
Another look at residual dynamic mode decomposition in the regime of fewer snapshots than dictionary size
,”
Phys. D
469
,
134341
(
2024
).
43.
Railway applications–aerodynamics-Part4: Requirements and test procedures for aerodynamics on open track
,” CEN EN 14067–4 (
2013
).
44.
Z.-X.
Che
,
Z.-W.
Chen
,
Y.-Q.
Ni
,
S.
Huang
, and
Z.-W.
Li
, “
Research on the impact of air-blowing on aerodynamic drag reduction and wake characteristics of a high-speed maglev train
,”
Phys. Fluids
35
,
115138
(
2023
).
45.
J.
Zhang
,
A.
Xu
,
F.
Huang
,
Y.
Bai
, and
T.
Liu
, “A novel vortex control method for improving anti-overturning performance of a high-speed train with leeward airbag structures under crosswinds,”
Phys. Fluids
36
(
6
),
065146
(
2024
).
46.
J.
Zhang
,
Y.
Ding
,
F.
Wang
,
N.
Xiang
,
A.
Xu
,
Z.
Chen
, and
M.
Tang
, “Comparison of aerodynamic performance of trains running on bridges under crosswinds using various motion modes,”
Phys. Fluids
35
(
12
),
125125
(
2023
).
47.
Z.-W.
Chen
,
Z.-J.
Guo
,
Z.-X.
Che
,
Z.-D.
Huang
,
Y.-Q.
Ni
,
S.-M.
Wang
,
S.
Huang
,
Z.-W.
Li
, and
Q.-X.
Wang
, “
Evaluation of active leeward side air-blowing layout on the lateral aerodynamic performance of high-speed trains in crosswinds environment: Sustainable and safe operation strategy
,”
J. Wind Eng. Ind Aerodyn.
247
,
105695
(
2024
).
48.
S.
Han
,
F.
Wang
, and
J.
Zhang
, “Influence of inflow conditions on simplified heavy vehicle wake,”
Phys. Fluids
36
(
4
),
045151
(
2024
).
49.
D.
Zhang
,
Z.-H.
Guo
,
Y.-Q.
Ni
,
Z.-W.
Chen
,
W. K.
Ao
,
A.
Bordbar
, and
F.-R.
Zhou
, “
Correlation between cargo properties and train overturning safety for a high-speed freight train under strong winds
,”
Eng. Appl. Comput. Fluid Mech.
17
,
2221308
(
2023
).
50.
W.
Shi
,
J.
Li
,
H.
Gao
,
H.
Zhang
,
Z.
Yang
, and
Y.
Jiang
, “
Numerical investigations on drag reduction of a civil light helicopter fuselage
,”
Aerosp. Sci. Technol.
106
,
106104
(
2020
).
51.
C.
Tan
,
D.
Zhou
,
G.
Chen
,
J.
Sheridan
, and
S.
Krajnovic
, “
Influences of marshalling length on the flow structure of a maglev train
,”
Int. J. Heat Fluid Flow
85
,
108604
(
2020
).
52.
Z.-D.
Huang
,
Z.-B.
Zhou
,
N.
Chang
,
Z.-W.
Chen
, and
S.-M.
Wang
, “
Aerodynamic features of high-speed maglev trains with different marshaling lengths running on a viaduct under crosswinds
,”
CMES
140
,
975
(
2024
).
53.
F.
Alff
,
U.
Brummund
,
W.
Clauss
,
M.
Oschwald
,
J.
Sender
, and
W.
Waidmann
, “
Experimental investigation of the combustion process in a supersonic combustion ramjet (SCRAMJET) combustion chamber,”
(
DLR
,
1994
).
54.
R.
Hönig
,
D.
Theisen
,
R.
Fink
,
R.
Lachner
,
G.
Kappler
,
D.
Rist
, and
P.
Andresen
, “
Experimental investigation of a SCRAMJET model combustor with injection through a swept ramp using laser-induced fluorescence with tunable excimer lasers
,” in
Symposium (International) on Combustion
(
Elsevier
,
1996
), Vol.
26
, p.
2949
.
55.
M. V.
Silnikov
,
M. V.
Chernyshov
, and
V. N.
Uskov
, “
Analytical solutions for Prandtl–Meyer wave–oblique shock overtaking interaction
,”
Acta Astronaut.
99
,
175
(
2014
).
56.
K.
Ananthakrishnan
and
M.
Govardhan
, “
Influence of fillet shapes on secondary flow field in a transonic axial flow turbine stage
,”
Aerosp. Sci. Technol.
82–83
,
425
(
2018
).
57.
M.
Dharavath
,
P.
Manna
, and
D.
Chakraborty
, “
Thermochemical exploration of hydrogen combustion in generic scramjet combustor
,”
Aerosp. Sci. Technol.
24
,
264
(
2013
).
58.
J.
Panda
and
R. G.
Seasholtz
, “
Measurement of shock structure and shock–vortex interaction in underexpanded jets using Rayleigh scattering
,”
Phys. Fluids
11
,
3761
(
1999
).
You do not currently have access to this content.