We propose a physics-informed data-driven framework for urban wind estimation. This framework validates and incorporates the Reynolds number independence for flows under various working conditions, thus allowing the extrapolation for wind conditions far beyond the training data. Another key enabler is a machine-learned non-dimensionalized manifold from snapshot data. The velocity field is modeled using a double encoder–decoder approach. The first encoder normalizes data using the oncoming wind speed, while the second encoder projects this normalized data onto the isometric feature mapping manifold. The decoders reverse this process, with k-nearest neighbor performing the first decoding and the second undoing the normalization. The manifold is coarse-grained by clustering to reduce the computational load for de- and encoding. The sensor-based flow estimation is based on the estimate of the oncoming wind speed and a mapping from sensor signal to the manifold latent variables. The proposed machine-learned flow estimation framework is exemplified for the flow above an unmanned aerial vehicle vertiport. The wind estimation is shown to generalize well for rare wind conditions, not included in the original database.

1.
Y.
Yang
,
Y.
Liang
,
S.
Pröbsting
,
P.
Li
,
H.
Zhang
,
B.
Huang
,
C.
Liu
,
H.
Pei
, and
B. R.
Noack
, “
Sizing of multicopter air taxis—Weight, endurance, and range
,”
Aerospace
11
,
200
(
2024
).
2.
N. H.
Motlagh
,
T.
Taleb
, and
O.
Arouk
, “
Low-altitude unmanned aerial vehicles-based internet of things services: Comprehensive survey and future perspectives
,”
IEEE Internet Things J.
3
,
899
922
(
2016
).
3.
K. R.
Antcliff
,
M. D.
Moore
, and
K. H.
Goodrich
, “
Silicon valley as an early adopter for on-demand civil VTOL operations
,” in
16th AIAA Aviation Technology, Integration, and Operations Conference
, AIAA Paper No. AIAA 2016-3466,
2016
.
4.
E.
Balestrieri
,
P.
Daponte
,
L.
De Vito
, and
F.
Lamonaca
, “
Sensors and measurements for unmanned systems: An overview
,”
Sensors
21
,
1518
(
2021
).
5.
F.
Ambrogi
,
U.
Piomelli
, and
D. E.
Rival
, “
Influence of time-varying freestream conditions on the dynamics of unsteady boundary-layer separation
,”
AIAA J.
62
,
3662
(
2024
).
6.
A. R.
Jones
,
O.
Cetiner
, and
M. J.
Smith
, “
Physics and modeling of large flow disturbances: Discrete gust encounters for modern air vehicles
,”
Annu. Rev. Fluid Mech.
54
,
469
493
(
2022
).
7.
Y.
Ou
,
H.
Xiong
,
H.
Jiang
,
Y.
Zhang
, and
B. R.
Noack
, “
Dynamic obstacle avoidance of fixed-wing aircraft in final phase via reinforcement learning
,”
IEEE Trans. Aerosp. Electron. Syst.
60
,
3923
(
2024
).
8.
Y.
Toparlar
,
B.
Blocken
,
P.
Vos
,
G. J. F.
Van Heijst
,
W. D.
Janssen
,
T.
van Hooff
,
H.
Montazeri
, and
H. J. P.
Timmermans
, “
CFD simulation and validation of urban microclimate: A case study for Bergpolder Zuid, Rotterdam
,”
Build. Environ.
83
,
79
90
(
2015
).
9.
R.
Ramponi
,
B.
Blocken
,
L. B.
de Coo
, and
W. D.
Janssen
, “
CFD simulation of outdoor ventilation of generic urban configurations with different urban densities and equal and unequal street widths
,”
Build. Environ.
92
,
152
166
(
2015
).
10.
S.
Jiang
,
J.
Wang
,
C.
Li
,
J.
Ou
,
P.
Duan
, and
L.
Li
, “
Identification of no-fly zones for delivery drone path planning in various urban wind environments
,”
Phys. Fluids
36
,
085166
(
2024
).
11.
T.
Van Hooff
and
B.
Blocken
, “
On the effect of wind direction and urban surroundings on natural ventilation of a large semi-enclosed stadium
,”
Comput. Fluids
39
,
1146
1155
(
2010
).
12.
F.
Rovere
,
G.
Barakos
, and
R.
Steijl
, “
Safety analysis of rotors in ground effect
,”
Aerosp. Sci. Technol.
129
,
107655
(
2022
).
13.
T.
Andronikos
,
G.
Papadakis
,
V. A.
Riziotis
,
J. M.
Prospathopoulos
, and
S. G.
Voutsinas
, “
Validation of a cost effective method for the rotor-obstacle interaction
,”
Aerosp. Sci. Technol.
113
,
106698
(
2021
).
14.
F.
Yunus
,
D.
Casalino
,
F.
Avallone
, and
D.
Ragni
, “
Efficient prediction of urban air mobility noise in a vertiport environment
,”
Aerosp. Sci. Technol.
139
,
108410
(
2023
).
15.
A. U.
Weerasuriya
,
K. T.
Tse
,
X.
Zhang
, and
S.
Li
, “
A wind tunnel study of effects of twisted wind flows on the pedestrian-level wind field in an urban environment
,”
Build. Environ.
128
,
225
235
(
2018
).
16.
A.
Ricci
,
M.
Burlando
,
A.
Freda
, and
M. P.
Repetto
, “
Wind tunnel measurements of the urban boundary layer development over a historical district in Italy
,”
Build. Environ.
111
,
192
206
(
2017
).
17.
Y.
Gao
,
R.
Yao
,
B.
Li
,
E.
Turkbeyler
,
Q.
Luo
, and
A.
Short
, “
Field studies on the effect of built forms on urban wind environments
,”
Renewable Energy
46
,
148
154
(
2012
).
18.
J.
Zou
,
Y.
Yu
,
J.
Liu
,
J.
Niu
,
K.
Chauhan
, and
C.
Lei
, “
Field measurement of the urban pedestrian level wind turbulence
,”
Build. Environ.
194
,
107713
(
2021
).
19.
X.
Shao
,
Z.
Liu
,
S.
Zhang
,
Z.
Zhao
, and
C.
Hu
, “
PIGNN-CFD: A physics-informed graph neural network for rapid predicting urban wind field defined on unstructured mesh
,”
Build. Environ.
232
,
110056
(
2023
).
20.
H.
Gao
,
G.
Hu
,
D.
Zhang
,
W.
Jiang
,
K. T.
Tse
,
K. C. S.
Kwok
, and
A.
Kareem
, “
Urban wind field prediction based on sparse sensors and physics-informed graph-assisted auto-encoder
,”
Comput.-Aided. Civ. Infrastruct. Eng.
39
,
1409
1430
(
2024
).
21.
H.
Gao
,
J.
Liu
,
P.
Lin
,
G.
Hu
,
L.
Patruno
,
Y.
Xiao
,
K. T.
Tse
, and
K. C. S.
Kwok
, “
An optimal sensor placement scheme for wind flow and pressure field monitoring
,”
Build. Environ.
244
,
110803
(
2023
).
22.
R.
Buccolieri
,
M.
Sandberg
, and
S.
Di Sabatino
, “
City breathability and its link to pollutant concentration distribution within urban-like geometries
,”
Atmos. Environ.
44
,
1894
1903
(
2010
).
23.
J.
Hang
and
Y.
Li
, “
Wind conditions in idealized building clusters: Macroscopic simulations using a porous turbulence model
,”
Boundary-Layer Meteorol.
136
,
129
159
(
2010
).
24.
P.
Moonen
,
V.
Dorer
, and
J.
Carmeliet
, “
Evaluation of the ventilation potential of courtyards and urban street canyons using RANS and LES
,”
J. Wind Eng. Ind. Aerodyn.
99
,
414
423
(
2011
).
25.
M.
Lin
,
J.
Hang
,
Y.
Li
,
Z.
Luo
, and
M.
Sandberg
, “
Quantitative ventilation assessments of idealized urban canopy layers with various urban layouts and the same building packing density
,”
Build. Environ.
79
,
152
167
(
2014
).
26.
X.
Wang
,
G. Y.
Cornejo Maceda
,
Y.
Liu
,
G.
Hu
,
N.
Gao
,
F.
Raps
, and
B. R.
Noack
, “
Coarse-graining characterization of the room flow circulations due to a fan-array wind generator
,”
Phys. Fluids
36
,
085146
(
2024
).
27.
S.
Li
,
Y.
Liu
,
Z.
Jiang
,
G.
Hu
,
B. R.
Noack
, and
F.
Raps
, “
Aerodynamic characterization of a fan-array wind generator
,”
AIAA J.
62
,
291
301
(
2024
).
28.
Y.
Liu
,
B. R.
Noack
,
G.
Hu
,
J.
Chen
,
N.
Gao
, and
F.
Raps
, “
Aerodynamic characterization of a wind generator with 40  × 40 individually controllable fans
,”
Phys. Fluids
(to be published).
29.
S.
Li
,
W.
Li
, and
B. R.
Noack
, “
Machine-learned control-oriented flow estimation for multi-actuator multi-sensor systems exemplified for the fluidic pinball
,”
J. Fluid Mech.
952
,
A36
(
2022
).
30.
K.
Schweiger
and
L.
Preis
, “
Urban air mobility: Systematic review of scientific publications and regulations for vertiport design and operations
,”
Drones
6
,
179
(
2022
).
31.
M. S.
Araghizadeh
,
B.
Sengupta
,
H.
Lee
, and
R. S.
Myong
, “
Aeroacoustic investigation of side-by-side urban air mobility aircraft in full configuration with ground effect
,”
Phys. Fluids
36
,
087160
(
2024
).
32.
K.
Uehara
,
S.
Wakamatsu
, and
R.
Ooka
, “
Studies on critical Reynolds number indices for wind-tunnel experiments on flow within urban areas
,”
Boundary-Layer Meteorol.
107
,
353
370
(
2003
).
33.
I. P.
Castro
and
A. G.
Robins
, “
The flow around a surface-mounted cube in uniform and turbulent streams
,”
J. Fluid Mech.
79
,
307
335
(
1977
).
34.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
35.
X.
Sun
,
W.
Cao
,
X.
Shan
,
Y.
Liu
, and
W.
Zhang
, “
A generalized framework for integrating machine learning into computational fluid dynamics
,”
J. Comput. Sci.
82
,
102404
(
2024
).
36.
M.
Bergmann
,
C.-H.
Bruneau
, and
A.
Iollo
, “
Enablers for robust POD models
,”
J. Comput. Phys.
228
,
516
538
(
2009
).
37.
J. A.
Bourgeois
,
R. J.
Martinuzzi
, and
B. R.
Noack
, “
Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake
,”
J. Fluid Mech.
736
,
316
350
(
2013
).
38.
B. R.
Noack
,
K.
Afanasiev
,
M.
Morzyński
,
G.
Tadmor
, and
F.
Thiele
, “
A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
,”
J. Fluid Mech.
497
,
335
363
(
2003
).
39.
B. C.
Bobusch
,
R.
Woszidlo
,
J.
Bergada
,
C. N.
Nayeri
, and
C. O.
Paschereit
, “
Experimental study of the internal flow structures inside a fluidic oscillator
,”
Exp. Fluids
54
,
1559
(
2013
).
40.
B.
Protas
,
B. R.
Noack
, and
J.
Östh
, “
Optimal nonlinear eddy viscosity in Galerkin models of turbulent flows
,”
J. Fluid Mech.
766
,
337
367
(
2015
).
41.
N.
Deng
,
B. R.
Noack
,
M.
Morzyński
, and
L. R.
Pastur
, “
Low-order model for successive bifurcations of the fluidic pinball
,”
J. Fluid Mech.
884
,
A37
(
2020
).
42.
C.
He
,
P.
Wang
, and
Y.
Liu
, “
Data assimilation for turbulent mean flow and scalar fields with anisotropic formulation
,”
Exp. Fluids
62
,
117
(
2021
).
43.
J.
Burkardt
,
M.
Gunzburger
, and
H.-C.
Lee
, “
POD and CVT-based reduced-order modeling of Navier-Stokes flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
337
355
(
2006
).
44.
A. G.
Nair
,
C.-A.
Yeh
,
E.
Kaiser
,
B. R.
Noack
,
S. L.
Brunton
, and
K.
Taira
, “
Cluster-based feedback control of turbulent post-stall separated flows
,”
J. Fluid Mech.
875
,
345
375
(
2019
).
45.
Y.
Cao
,
E.
Kaiser
,
J.
Boree
,
B. R.
Noack
,
L.
Thomas
, and
S.
Guilain
, “
Cluster-based analysis of cycle-to-cycle variations: Application to internal combustion engines
,”
Exp. Fluids
55
,
1837
(
2014
).
46.
C.
Hou
,
N.
Deng
, and
B. R.
Noack
, “
Dynamics-augmented cluster-based network model
,”
J. Fluid Mech.
988
,
A48
(
2024
).
47.
J. P.
Laval
,
B.
Dubrulle
, and
S.
Nazarenko
, “
Nonlocality and intermittency in three-dimensional turbulence
,”
Phys. Fluids
13
,
1995
2012
(
2001
).
48.
S.
Bagheri
, “
Koopman-mode decomposition of the cylinder wake
,”
J. Fluid Mech.
726
,
596
623
(
2013
).
49.
M. G.
Kindree
,
M.
Shahroodi
, and
R. J.
Martinuzzi
, “
Low-frequency dynamics in the turbulent wake of cantilevered square and circular cylinders protruding a thin laminar boundary layer
,”
Exp. Fluids
59
,
186
(
2018
).
50.
J.-C.
Loiseau
,
B. R.
Noack
, and
S. L.
Brunton
, “
Sparse reduced-order modelling: Sensor-based dynamics to full-state estimation
,”
J. Fluid Mech.
844
,
459
490
(
2018
).
51.
S.
Cucchiara
,
A.
Iollo
,
T.
Taddei
, and
H.
Telib
, “
Model order reduction by convex displacement interpolation
,”
J. Comput. Phys.
514
,
113230
(
2024
).
52.
E.
Farzamnik
,
A.
Ianiro
,
S.
Discetti
,
N.
Deng
,
K.
Oberleithner
,
B. R.
Noack
, and
V.
Guerrero
, “
From snapshots to manifolds—A tale of shear flows
,”
J. Fluid Mech.
955
,
A34
(
2023
).
53.
R.
Li
and
S.
Song
, “
Manifold learning-based reduced-order model for full speed flow field
,”
Phys. Fluids
36
,
087117
(
2024
).
54.
L.
Ma
,
X.
Wu
, and
W.
Zhang
, “
Efficient aerodynamic shape optimization by using unsupervised manifold learning to filter geometric features
,”
Eng. Appl. Comput. Fluid Mech.
18
,
2384465
(
2024
).
55.
L.
Marra
,
G. Y.
Cornejo Maceda
,
A.
Meilán-Vila
,
V.
Guerrero
,
S.
Rashwan
,
B. R.
Noack
,
S.
Discetti
, and
A.
Ianiro
, “
Actuation manifold from snapshot data
,”
J. Fluid Mech.
996
,
A26
(
2024
).
56.
K.
Fukami
and
K.
Taira
, “
Grasping extreme aerodynamics on a low-dimensional manifold
,”
Nat. Commun.
14
,
6480
(
2023
).
57.
J. B.
Tenenbaum
,
V.
de Silva
, and
J. C.
Langford
, “
A global geometric framework for nonlinear dimensionality reduction
,”
Science
290
,
2319
2323
(
2000
).
58.
E.
Kaiser
,
B. R.
Noack
,
L.
Cordier
,
A.
Spohn
,
M.
Segond
,
M.
Abel
,
G.
Daviller
,
J.
Östh
,
S.
Krajnović
, and
R. K.
Niven
, “
Cluster-based reduced-order modelling of a mixing layer
,”
J. Fluid Mech.
754
,
365
414
(
2014b
).
59.
H.
Li
,
D.
Fernex
,
R.
Semaan
,
J.
Tan
,
M.
Morzyński
, and
B. R.
Noack
, “
Cluster-based network model
,”
J. Fluid Mech.
906
,
A21
(
2021b
).
60.
D.
Fernex
,
B. R.
Noack
, and
R.
Semaan
, “
Cluster-based network modeling—From snapshots to complex dynamical systems
,”
Sci. Adv.
7
,
eabf5006
(
2021
).
61.
N.
Deng
,
B. R.
Noack
,
M.
Morzyński
, and
L. R.
Pastur
, “
Cluster-based hierarchical network model of the fluidic pinball–cartographing transient and post-transient, multi-frequency, multi-attractor behaviour
,”
J. Fluid Mech.
934
,
A24
(
2022
).
62.
C. J.
Stone
, “
Consistent nonparametric regression
,”
Ann. Stat.
5
,
595
(
1977
).
63.
E.
Fix
,
Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties
(
USAF School of Aviation Medicine
,
1985
), Vol.
1
.
64.
R. W.
Floyd
, “
Algorithm 97: Shortest path
,”
Commun. ACM
5
,
345
345
(
1962
).
65.
W. S.
Torgerson
, “
Multidimensional scaling: I. Theory and method
,”
Psychometrika
17
,
401
419
(
1952
).
66.
H.
Chang
(
2004
). “
Machine-learned flow estimation with sparse data—Exemplified for the rooftop of an unmanned aerial vehicle vertiport
,”
Zendo
https://zenodo.org/doi/10.5281/zenodo.14293947
You do not currently have access to this content.