Although a key driver for green energy development, solar photovoltaic power plants face the major risk of severe wind damages, as there is currently no best practice on how to best stow the panels under strong wind conditions. In this research, an out-of-the-box numerical framework is introduced to inform the discussion around panel design and recommended stow positions, one that leverages the increasing use of solar tracker actuators, that allows panels to set an optimal angle relative to the sun to maximize power output, and incidentally offer a great potential for optimal safeguarding through individual panel piloting. The task of concurrently optimizing multiple panel tilts in a turbulent atmospheric boundary layer wind flow is modeled as a Markov decision process and solved with a single-step deep reinforcement learning algorithm, intended for situations where the optimal policy to be learnt by a neural network does not depend on state. The numerical reward fed to the neural network is computed from high-fidelity numerical simulations combining variational multiscale modeling of the Navier–Stokes equations and anisotropic boundary layer mesh adaptation, to accurately represent critical flow features at affordable computational costs, regardless of the panel tilts chosen by the learning agent. A range of experiments is performed across various learning objectives accounting for different possible causes of breakage (such as tear, vibrations, and fatigue), for which the proposed approach successfully minimizes the aerodynamic efforts on two-dimensional and three-dimensional arrangements of six ground-mounted panels under an incident wind speed of 50 km/h, while outperforming baseline safeguarding practices considered in the literature by several dozen per cent. This gives hope that, by interacting with its computational fluid dynamics environment in a trial-and-error manner, a deep reinforcement learning agent can learn unexpected solutions to this complex decision-making problem and come up with innovative, feasible solutions capable of managing utility-scale solar assets during high-wind events while efficiently complementing engineering intuition and practical experience.

1.
I. E.
Agency
,
World Energy Outlook 2021
(
I. E. Agency
,
2021
).
2.
Energy pathways to 2050 key results executive summary
,”
Technical Report No. INIS-FR--22-0122
(
RTE France
,
2021
).
3.
M. A.
Green
,
E. D.
Dunlop
,
J.
Hohl‐Ebinger
,
M.
Yoshita
,
N.
Kopidakis
,
K.
Bothe
,
D.
Hinken
,
M.
Rauer
, and
X.
Hao
, “
Solar cell efficiency tables (Version 60)
,”
Prog. Photovoltaics
30
,
687
701
(
2022
).
4.
N. D.
Jackson
and
T.
Gunda
, “
Evaluation of extreme weather impacts on utility-scale photovoltaic plant performance in the United States
,”
Appl. Energy
302
,
117508
(
2021
).
5.
K. A.
Moharram
,
M. S.
Abd-Elhady
,
H. A.
Kandil
, and
H.
El-Sherif
, “
Enhancing the performance of photovoltaic panels by water cooling
,”
Ain Shams Eng. J.
4
,
869
877
(
2013
).
6.
S. A.
Kalogirou
,
R.
Agathokleous
, and
G.
Panayiotou
, “
On-site PV characterization and the effect of soiling on their performance
,”
Energy
51
,
439
446
(
2013
).
7.
D.
Valentín
,
C.
Valero
,
M.
Egusquiza
, and
A.
Presas
, “
Failure investigation of a solar tracker due to wind-induced torsional galloping
,”
Eng. Failure Anal.
135
,
106137
(
2022
).
8.
J. A.
Cárdenas-Rondón
,
M.
Ogueta-Gutiérrez
,
S.
Franchini
, and
R.
Manzanares-Bercial
, “
Stability analysis of two-dimensional flat solar trackers using aerodynamic derivatives at different heights above ground
,”
J. Wind Eng. Ind. Aerodyn.
243
,
105606
(
2023
).
9.
M.
Shademan
,
R. M.
Barron
,
R.
Balachandar
, and
H.
Hangan
, “
Numerical simulation of wind loading on ground-mounted solar panels at different flow configurations
,”
Can. J. Civ. Eng.
41
,
728
738
(
2014
).
10.
C. M.
Jubayer
and
H.
Hangan
, “
A numerical approach to the investigation of wind loading on an array of ground mounted solar photovoltaic (PV) panels
,”
J. Wind Eng. Ind. Aerodyn.
153
,
60
70
(
2016
).
11.
W. P.
Warsido
,
G. T.
Bitsuamlak
,
J.
Barata
, and
A.
Gan Chowdhury
, “
Influence of spacing parameters on the wind loading of solar array
,”
J. Fluids Struct.
48
,
295
315
(
2014
).
12.
A.
Xu
,
W.
Ma
,
H.
Yuan
, and
L.
Lu
, “
The effects of row spacing and ground clearance on the wind load of photovoltaic (PV) arrays
,”
Renewable Energy
220
,
119627
(
2024
).
13.
A.
Abiola-Ogedengbe
,
H.
Hangan
, and
K.
Siddiqui
, “
Experimental investigation of wind effects on a standalone photovoltaic (PV) module
,”
Renewable Energy
78
,
657
665
(
2015
).
14.
H.
Irtaza
and
A.
Agarwal
, “
CFD simulation of turbulent wind effect on an array of ground-mounted solar PV panels
,”
J. Inst. Eng. (India): Ser. A
99
,
205
218
(
2018
).
15.
J.
Sun
,
Y.
He
,
X.
Li
,
Z.
Lu
, and
X.
Yang
, “
CFD simulations for layout optimal design for ground-mounted photovoltaic panel arrays
,”
J. Wind Eng. Ind. Aerodyn.
242
,
105558
(
2023
).
16.
G. P.
Reina
and
G.
De Stefano
, “
Computational evaluation of wind loads on sun-tracking ground-mounted photovoltaic panel arrays
,”
J. Wind Eng. Ind. Aerodyn.
170
,
283
293
(
2017
).
17.
H.
Bendjebbas
,
A. A.
El-Hadj
, and
M.
Abbas
, “
Numerical simulation of the effect of wind barrier openings on high-speed wind flow around a heliostat field
,”
Appl. Math. Modell.
61
,
443
456
(
2018
).
18.
C.
Rohr
,
P. A.
Bourke
, and
D.
Banks
, “
Torsional instability of single-axis solar tracking systems
,” in
Proceedings of the 14th International Conference on Wind Engineering
,
2015
.
19.
Y.
Prunier
,
D.
Chuet
,
S.
Nicolay
,
G.
Hamon
, and
M.
Darnon
, “
Optimization of photovoltaic panel tilt angle for short periods of time or multiple reorientations
,”
Energy Convers. Manage.
20
,
100417
(
2023
).
20.
M. T.
Browne
,
Z. J.
Taylor
,
S.
Li
, and
S.
Gamble
, “
A wind load design method for ground-mounted multi-row solar arrays based on a compilation of wind tunnel experiments
,”
J. Wind Eng. Ind. Aerodyn.
205
,
104294
(
2020
).
21.
J.
Viquerat
,
R.
Duvigneau
,
P.
Meliga
,
A.
Kuhnle
, and
E.
Hachem
, “
Policy-based optimization: Single-step policy gradient method seen as an evolution strategy
,”
Neural Comput. Appl.
35
,
449
467
(
2023
).
22.
H.
Ghraieb
,
J.
Viquerat
,
A.
Larcher
,
P.
Meliga
, and
E.
Hachem
, “
Single-step deep reinforcement learning for two- and three-dimensional optimal shape design
,”
AIP Adv.
12
,
085108
(
2022
).
23.
M.
Renault
,
J.
Viquerat
,
P.
Meliga
,
G.-A.
Grandin
,
N.
Meynet
, and
E.
Hachem
, “
Investigating gas furnace control practices with reinforcement learning
,”
Int. J. Heat Mass Transfer
209
,
124147
(
2023
).
24.
R.
Codina
and
J.
Principe
, “
Dynamic subscales in the finite element approximation of thermally coupled incompressible flows
,”
Int. J. Numer. Methods Fluids
54
,
707
730
(
2007
).
25.
E.
Hachem
,
B.
Rivaux
,
T.
Kloczko
,
H.
Digonnet
, and
T.
Coupez
, “
Stabilized finite element method for incompressible flows with high Reynolds number
,”
J. Comput. Phys.
229
,
8643
8665
(
2010
).
26.
C. M.
Jubayer
and
H.
Hangan
, “
Numerical simulation of wind effects on a stand-alone ground mounted photovoltaic (PV) system
,”
J. Wind Eng. Ind. Aerodyn.
134
,
56
64
(
2014
).
27.
M. C. G.
Hall
, “
Application of adjoint sensitivity theory to an atmospheric general circulation model
,”
J. Atmos. Sci.
43
,
2644
2651
(
1986
).
28.
A.
Jameson
,
L.
Martinelli
, and
N. A.
Pierce
, “
Optimum aerodynamic design using the Navier–Stokes equations
,”
Theor. Comput. Fluid Dyn.
10
,
213
237
(
1998
).
29.
M. D.
Gunzburger
,
Perspectives in Flow Control and Optimization
(
SIAM
,
Philadelphia
,
2002
).
30.
J.
Kennedy
and
R.
Eberhart
, “
Particle swarm optimization
,” in
Proceedings of ICNN'95-International Conference on Neural Networks
(IEEE,
1995
), pp.
1942
1948
.
31.
J. H.
Holland
, “
Genetic algorithms
,”
Sci. Am.
267
,
66
73
(
1992
).
32.
J.
Viquerat
,
P.
Meliga
,
A.
Larcher
, and
E.
Hachem
, “
A review on deep reinforcement learning for fluid mechanics: An update
,”
Phys. Fluids
34
,
111301
(
2022
).
33.
X.
Yu
and
J.
Zhou
, “
A robust method based on reinforcement learning and differential evolution for the optimal photovoltaic parameter extraction
,”
Appl. Soft Comput.
148
,
110916
(
2023
).
34.
N.
Kullampalayam Murugaiyan
,
K.
Chandrasekaran
,
P.
Manoharan
, and
B.
Derebew
, “
Leveraging opposition-based learning for solar photovoltaic model parameter estimation with exponential distribution optimization algorithm
,”
Sci. Rep.
14
,
528
(
2024
).
35.
H.
Alamro
,
H.
Alqahtani
,
F. A.
Alotaibi
,
K. M.
Othman
,
M.
Assiri
,
A. A.
Alneil
, and
L. V. N.
Prasad
, “
Deep reinforcement learning based solution for sustainable energy management in photovoltaic systems
,”
Optik
295
,
171530
(
2023
).
36.
A. M.
Aly
and
J.
Clarke
, “
Wind design of solar panels for resilient and green communities: CFD with machine learning
,”
Sustainable Cities Soc.
94
,
104529
(
2023
).
37.
A.
Naeiji
,
F.
Raji
, and
I.
Zisis
, “
Wind loads on residential scale rooftop photovoltaic panels
,”
J. Wind Eng. Ind. Aerodyn.
168
,
228
246
(
2017
).
38.
H.
Alrawashdeh
and
T.
Stathopoulos
, “
Wind loads on solar panels mounted on flat roofs: Effect of geometric scale
,”
J. Wind Eng. Ind. Aerodyn.
206
,
104339
(
2020
).
39.
L.
Billon
,
Y.
Mesri
, and
E.
Hachem
, “
Anisotropic boundary layer mesh generation for immersed complex geometries
,”
Eng. Comput.
33
,
249
260
(
2017
).
40.
G.
Guiza
,
A.
Larcher
,
A.
Goetz
,
L.
Billon
,
P.
Meliga
, and
E.
Hachem
, “
Anisotropic boundary layer mesh generation for reliable 3D unsteady RANS simulations
,”
Finite Elem. Anal. Des.
170
,
103345
(
2020
).
41.
D.
Marcum
and
F.
Alauzet
, “
Aligned metric-based anisotropic solution adaptive mesh generation
,”
Procedia Eng.
82
,
428
444
(
2014
).
42.
R.
Codina
, “
Stabilized finite element approximation of transient incompressible flows using orthogonal subscales
,”
Comput. Methods Appl. Mech. Eng.
191
,
4295
4321
(
2002
).
43.
E.
Hachem
,
S.
Feghali
,
R.
Codina
, and
T.
Coupez
, “
Immersed stress method for fluid–structure interaction using anisotropic mesh adaptation
,”
Int. J. Numer. Methods Eng.
94
,
805
825
(
2013
).
44.
T.
Coupez
and
E.
Hachem
, “
Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing
,”
Comput. Methods Appl. Mech. Eng.
267
,
65
85
(
2013
).
45.
J.
Sari
,
F.
Cremonesi
,
M.
Khalloufi
,
F.
Cauneau
,
P.
Meliga
,
Y.
Mesri
, and
E.
Hachem
, “
Anisotropic adaptive stabilized finite element solver for RANS models
,”
Int. J. Numer. Methods Fluids
86
,
717
736
(
2018
).
46.
Y.
Bazilevs
,
V. M.
Calo
,
J. A.
Cottrell
,
T. J.
Hughes
,
A.
Reali
, and
G.
Scovazzi
, “
Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
197
,
173
201
(
2007
).
47.
O.
Colomés
,
S.
Badia
,
R.
Codina
, and
J.
Principe
, “
Assessment of variational multiscale models for the large eddy simulation of turbulent incompressible flows
,”
Comput. Methods Appl. Mech. Eng.
285
,
32
63
(
2015
).
48.
I.
Goodfellow
,
Y.
Bengio
, and
A.
Courville
,
Deep Learning
(
MIT Press
,
2016
).
49.
R.
Sutton
and
A.
Barto
,
Reinforcement Learning: An Introduction
(
MIT Press
,
2018
).
50.
J.
Viquerat
, see https://github.com/jviquerat/pbo for “
PBO Git Repository
” (
2021
).
51.
H.
Ghraieb
,
J.
Viquerat
,
A.
Larcher
,
P.
Meliga
, and
E.
Hachem
, “
Single-step deep reinforcement learning for open-loop control of laminar and turbulent flows
,”
Phys. Rev. Fluids
6
,
053902
(
2021
).
52.
K.
Numpacharoen
and
A.
Atsawarungruangkit
, “
Generating correlation matrices based on the boundaries of their coefficients
,”
PLoS One
7
,
e48902
(
2012
).
53.
D. P.
Kingma
and
J.
Ba
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
54.
C.
Geuzaine
and
J.-F.
Remacle
, “
Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities
,”
Int. J. Numer. Methods Eng.
79
(11),
1309
1331
(
2009
).
55.
B.
Blocken
,
T.
Stathopoulos
, and
J.
Carmeliet
, “
CFD simulation of the atmospheric boundary layer: Wall function problems
,”
Atmos. Environ.
41
,
238
252
(
2007
).
56.
A.
Mignone
,
G.
Inghirami
,
F.
Rubini
,
R.
Cazzaniga
,
M.
Cicu
, and
M.
Rosa-Clot
, “
Numerical simulations of wind-loaded floating solar panels
,”
Sol. Energy
219
,
42
49
(
2021
).
57.
E.
Artetxe
,
J.
Uralde
,
O.
Barambones
,
I.
Calvo
, and
I.
Martin
, “
Maximum power point tracker controller for solar photovoltaic based on reinforcement learning agent with a digital twin
,”
Mathematics
11
,
2166
(
2023
).
58.
G.
Yuan
and
F.
Xie
, “
Digital twin-based economic assessment of solar energy in smart microgrids using reinforcement learning technique
,”
Sol. Energy
250
,
398
408
(
2023
).
You do not currently have access to this content.