Diesel trains have a wide range of applications, especially in nonelectrified mountainous regions with many tunnels, where the ventilation performance of the power packs is crucial to ensure the smooth operation of the trains in tunnels. The smoke emitted from the power packs affects indoor air quality through air conditioning units (ACUs) on the top of the train. In this study, the interest is to understand the flow field around the power pack at the bottom of the train and diffusion of smoke on the top of the train. Numerical simulations were conducted using the incompressible unsteady Reynolds-averaged Navier–Stokes and shear stress transport k-ω two-equation turbulence model along with the slip-mesh technique. The simulation method and parameter settings were verified based on experimental data. The results show that the upstream fan flow is greater than the downstream in the same power package. The downstream fan flow fluctuates to a greater extent. The increase in train speed leads to a decrease in the fan flow and has a greater impact on the upstream fan flow. The downstream smoke concentration in the same ACU intake in the head car tail car is greater than that in the upstream. Compared to the train speed, the blockage ratio has a limited effect on fan flow and smoke diffusion. Therefore, to optimize the ventilation performance, a priority should be given to the speed of the train.

1.
S.
Chen
,
M.
Hu
,
Y.
Lei
, and
L.
Kong
, “
Novel hybrid power system and energy management strategy for locomotives
,”
Appl. Energy
348
,
121557
(
2023
).
2.
A.
Boretti
, “
High-efficiency internal combustion engine for hybrid hydrogen-electric locomotives
,”
Int. J. Hydrogen Energy
48
(
4
),
1596
1601
(
2023
).
3.
T.
Sinigaglia
,
M. E. S.
Martins
, and
J. C. M.
Siluk
, “
Technological evolution of internal combustion engine vehicle: A patent data analysis
,”
Appl. Energy
306
,
118003
(
2022
).
4.
M.
Cipek
,
D.
Pavković
,
Z.
Kljaić
, and
T. J.
Mlinarić
, “
Assessment of battery-hybrid diesel-electric locomotive fuel savings and emission reduction potentials based on a realistic mountainous rail route
,”
Energy
173
,
1154
1171
(
2019
).
5.
J.
Zhang
,
J.
Wang
,
Q.
Wang
,
X.
Xiong
, and
G.
Gao
, “
A study of the influence of bogie cut outs' angles on the aerodynamic performance of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
175
,
153
168
(
2018
).
6.
Z.
Guo
,
T.
Liu
,
Z.
Chen
,
Y.
Xia
,
W.
Li
, and
L.
Li
, “
Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind
,”
J. Wind Eng. Ind. Aerodyn.
196
,
104053
(
2020
).
7.
J.
Niu
,
Y.
Wang
,
F.
Liu
, and
R.
Li
, “
Numerical study on comparison of detailed flow field and aerodynamic performance of bogies of stationary train and moving train
,”
Veh. Syst. Dyn.
59
(
12
),
1844
1866
(
2021
).
8.
L.
Zhuo-ming
,
L.
Qi-liang
, and
Y.
Zhi-gang
, “
Flow structure and far-field noise of high-speed train under ballast track
,”
J. Wind Eng. Ind. Aerodyn.
220
,
104858
(
2022
).
9.
H.
Kwon
, “
Characteristics of the air flow underneath high-speed trains running on the ballast track
,”
J. Wind Eng. Ind. Aerodyn.
232
,
105283
(
2023
).
10.
C.
Paz
,
E.
Suárez
, and
C.
Gil
, “
Numerical methodology for evaluating the effect of sleepers in the underbody flow of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
167
,
140
147
(
2017
).
11.
D.
Soper
,
D.
Flynn
,
C.
Baker
,
A.
Jackson
, and
H.
Hemida
, “
A comparative study of methods to simulate aerodynamic flow beneath a high-speed train
,”
Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit
232
(
5
),
1464
1482
(
2018
).
12.
J.
Zhang
,
J.
Li
,
H.
Tian
,
G.
Gao
, and
J.
Sheridan
, “
Impact of ground and wheel boundary conditions on numerical simulation of the high-speed train aerodynamic performance
,”
J. Fluids Struct.
61
,
249
261
(
2016
).
13.
M.
Gallagher
,
J.
Morden
,
C.
Baker
,
D.
Soper
,
A.
Quinn
,
H.
Hemida
, and
M.
Sterling
, “
Trains in crosswinds–comparison of full-scale on-train measurements, physical model tests and CFD calculations
,”
J. Wind Eng. Ind. Aerodyn.
175
,
428
444
(
2018
).
14.
L.
Xu
,
M.
Huang
, and
J.
Niu
, “
Numerical study of indoor flow field and ventilation performance of the power room of a diesel locomotive under crosswind
,”
J. Wind Eng. Ind. Aerodyn.
241
,
105545
(
2023
).
15.
C.
Chen
,
Q.
Zhang
,
Z.
Li
,
Y.
Ma
,
L.
Xu
,
W.
Gong
, and
J.
Niu
, “
Numerical study on the effect of smoke emitted from the vents on the roof of a diesel train on the intake of downstream air-conditioning units
,”
Phys. Fluids
36
(
5
),
053306
(
2024
).
16.
W.
Liu
,
Z.
Ji
,
D.
Guo
,
G.
Yang
,
G.
Zhou
, and
K.
Ren
, “
Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train
,”
Acta Mech. Sin.
38
(
5
),
321251
(
2022
).
17.
J.
Niu
,
D.
Zhou
,
F.
Liu
, and
Y.
Yuan
, “
Effect of train length on fluctuating aerodynamic pressure wave in tunnels and method for determining the amplitude of pressure wave on trains
,”
Tunn. Undergr. Space Technol.
80
,
277
289
(
2018
).
18.
J.
Du
,
Q.
Fang
,
G.
Wang
,
D.
Zhang
, and
T.
Chen
, “
Fatigue damage and residual life of secondary lining of high-speed railway tunnel under aerodynamic pressure wave
,”
Tunn. Undergr. Space Technol.
111
,
103851
(
2021
).
19.
X.
Yang
,
A.
Shou
,
R.
Zhang
,
J.
Quan
,
X.
Li
, and
J.
Niu
, “
Numerical study on transient aerodynamic behaviors in a subway tunnel caused by a metro train running between adjacent platforms
,”
Tunn. Undergr. Space Technol.
117
,
104152
(
2021
).
20.
J.
Wang
,
T.
Wang
,
M.
Yang
,
B.
Qian
,
L.
Zhang
,
X.
Tian
, and
F.
Shi
, “
Research on the influence of different heating zone lengths on pressure waves and a newly designed method of pressure wave mitigation in railway tunnels
,”
Tunn. Undergr. Space Technol.
122
,
104379
(
2022
).
21.
J.
Zhang
,
Y.
Wang
,
S.
Han
,
F.
Wang
, and
G.
Gao
, “
A novel arch lattice-shell of enlarged cross-section hoods for micro-pressure wave mitigation at exit of maglev tunnels
,”
Tunn. Underg. Space Technol.
132
,
104859
(
2023
).
22.
L.
Li
,
X.
Li
,
K.
Jin
,
X.
Yang
,
L.
Xu
, and
J.
Niu
, “
Numerical study on the indoor flow field and ventilation performance in the power room of a hybrid locomotive that passes through a tunnel
,”
Tunn. Undergr. Space Technol.
141
,
105379
(
2023
).
23.
B.
Wang
,
W.
Peng
,
W.
Zhong
, and
T.
Liang
, “
Investigation on smoke propagation behavior and smoke back-layering length of fires in an inclined tunnel under natural ventilation
,”
Tunn. Undergr. Space Technol.
150
,
105823
(
2024
).
24.
Z.
Zhang
,
Y.
Tan
,
R.
Hong
,
Y.
Zhao
,
H.
Zhang
,
Y.
Zhang
, and
Z.
Li
, “
Experimental investigation of tunnel temperature field and smoke spread under the influence of a slow moving train with a fire in the carriage
,”
Tunn. Undergr. Space Technol.
131
,
104844
(
2023
).
25.
H.
Guo
,
K.
Zhang
,
G.
Xu
, and
J.
Niu
, “
Effects of pressure waves on the cooling-fan performance and indoor flow of air-conditioning units on the roof of a high-speed maglev train
,”
Tunn. Undergr. Space Technol.
145
,
105608
(
2024
).
26.
European Committee for Standardization
,
Railway Applications - Aerodynamics-Part 6: Requirements and Test Procedures for Cross Wind Assessment
(
BS EN
,
2018
), pp.
14067
14066
.
27.
S.
Huang
,
Z. X.
Che
,
Z. W.
Li
,
Y. N.
Jiang
, and
Z. G.
Wang
, “
Influence of tunnel cross-sectional shape on surface pressure change induced by passing metro trains
,”
Tunn. Undergr. Space Technol.
106
,
103611
(
2020
).
28.
C. R.
Chu
,
S. Y.
Chien
,
C. Y.
Wang
, and
T. R.
Wu
, “
Numerical simulation of two trains intersecting in a tunnel
,”
Tunn. Undergr. Space Technol.
42
,
161
174
(
2014
).
29.
H.
Zhang
,
C.
Zhu
,
M.
Liu
,
W.
Zheng
,
S.
You
,
B.
Li
, and
P.
Xue
, “
Mathematical modeling and sensitive analysis of the train-induced unsteady airflow in subway tunnel
,”
J. Wind Eng. Ind. Aerodyn.
171
,
67
78
(
2017
).
30.
W.
Yang
,
E.
Deng
,
M.
Lei
,
P.
Zhang
, and
R.
Yin
, “
Flow structure and aerodynamic behavior evolution during train entering tunnel with entrance in crosswind
,”
J. Wind Eng. Ind. Aerodyn.
175
,
229
243
(
2018
).
31.
European Committee for Standardization
,
Railway Applications - Aerodynamics-Part 5: Requirements and Assessment Procedures for Aerodynamics in Tunnels
(
BS EN
,
2021
), pp.
14067
14065
.
32.
China Yituo Group Co., Ltd
.
Practical Factory Power Engineer's Manual
(
Machinery Industry Press
,
1998
).
33.
W.
Bingquan
,
Industrial Furnace Design Manual
(
Machinery Industry Press
,
2010
).
34.
L.
Xu
,
C.
Chen
,
Q.
Zhang
, and
J.
Niu
, “
Numerical study on effect of crosswind on the cooling-fan flow and smoke diffusion of power pack suspended under the diesel train
,”
Case Stud. Therm. Eng.
57
,
104302
(
2024
).
35.
J.
Niu
,
D.
Zhou
,
X.
Liang
,
T.
Liu
, and
S.
Liu
, “
Numerical study on the aerodynamic pressure of a metro train running between two adjacent platforms
,”
Tunn. Undergr. Space Technol.
65
,
187
199
(
2017
).
36.
K.
He
,
G. J.
Gao
,
J. B.
Wang
,
M.
Fu
,
X. J.
Miao
, and
J.
Zhang
, “
Performance of a turbine driven by train-induced wind in a tunnel
,”
Tunn. Undergr. Space Technol.
82
,
416
427
(
2018
).
37.
J. Q.
Niu
,
D.
Zhou
,
X. F.
Liang
,
S.
Liu
, and
T. H.
Liu
, “
Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels
,”
J. Wind Eng. Ind. Aerodyn.
173
,
187
198
(
2018
).
38.
T.
Liu
,
Z.
Chen
,
X.
Zhou
, and
J.
Zhang
, “
A CFD analysis of the aerodynamics of a high-speed train passing through a windbreak transition under crosswind
,”
Eng. Appl. Comput. Fluid Mech.
12
(
1
),
137
151
(
2018
).
39.
L.
Wang
,
J.
Luo
,
F.
Li
,
D.
Guo
,
L.
Gao
, and
D.
Wang
, “
Aerodynamic performance and flow evolution of a high-speed train exiting a tunnel with crosswinds
,”
J. Wind Eng. Ind. Aerodyn.
218
,
104786
(
2021
).
40.
D.
Qin
,
T.
Li
,
N.
Zhou
, and
J.
Zhang
, “
Aerodynamic drag and noise reduction of a pantograph of high-speed trains with a novel cavity structure
,”
Phys. Fluids
36
(
2
),
027108
(
2024
).
41.
X.
He
and
S.
Zou
, “
Numerical study on wind-loading characteristics of a high-speed train running over the bridge under tornado-like vortices
,”
Phys. Fluids
36
(
1
),
017129
(
2024
).
42.
J.
Zhang
,
Y.
Ding
,
F.
Wang
,
N.
Xiang
,
A.
Xu
,
Z.
Chen
, and
M.
Tang
, “
Comparison of aerodynamic performance of trains running on bridges under crosswinds using various motion modes
,”
Phys. Fluids
35
(
12
),
125125
(
2023
).
43.
Z. X.
Che
,
Z. W.
Chen
,
Y. Q.
Ni
,
S.
Huang
, and
Z. W.
Li
, “
Research on the impact of air-blowing on aerodynamic drag reduction and wake characteristics of a high-speed maglev train
,”
Phys. Fluids
35
(
11
),
115138
(
2023
).
44.
J.
Zhang
,
F.
Huang
,
Y.
Yu
,
S.
Han
,
Y.
Ding
, and
G.
Gao
, “
A novel wake flow control method for drag reduction of a high-speed train with vortex generators installing on streamlined tail nose
,”
Phys. Fluids
35
(
10
),
105139
(
2023
).
45.
J.
Xing
,
Z.
Liu
,
P.
Huang
,
C.
Feng
,
Y.
Zhou
,
D.
Zhang
, and
F.
Wang
, “
Experimental and numerical study of the dispersion of carbon dioxide plume
,”
J. Hazard. Mater.
256–257
,
40
48
(
2013
).
46.
S.
Deilami
,
K.
Abbasi
,
A.
Houshyar
,
H.
Izadneshan
, and
H. M.
Beni
, “
Study the effect of temperature variation and intrinsic layer thickness on the linear response of a PIN photodetector: A finite element method approach
,”
Res. Eng.
17
,
100810
(
2023
).
47.
M. S.
Islam
,
M. M.
Rahman
,
A.
Arsalanloo
,
H. M.
Beni
,
P.
Larpruenrudee
,
N. S.
Bennett
, and
Y.
Gu
, “
How SARS-CoV-2 Omicron droplets transport and deposit in realistic extrathoracic airways
,”
Phys. Fluids
34
(
11
),
113320
(
2022
).
48.
P.
Joseph
,
X.
Amandolese
, and
J. L.
Aider
, “
Drag reduction on the 25slant angle Ahmed reference body using pulsed jets
,”
Exp. Fluids
52
,
1169
1185
(
2012
).
49.
J.
Niu
,
Y.
Wang
,
Z.
Chen
, and
F.
Liu
, “
Numerical study on the effect of braking plates on flow structure and vehicle and enhanced braking of vehicles inside and outside tunnels
,”
J. Wind Eng. Ind. Aerodyn.
214
,
104670
(
2021
).
You do not currently have access to this content.