Significant advances have been made in understanding the interaction between airflow and dandelion seed pappus models consisting of a central disk and tens of filaments. Previous theoretical analyses and numerical simulations assumed a radially constant filament diameter. However, experimental measurements revealed that the filament diameter could vary radially. The effect of radial variations in filament diameter on the interaction between airflow and dandelion seeds has not yet been explored. This piece of work, therefore, numerically investigated the flow patterns around five flattened pappus models with linearly radial changes in filament diameter and the aerodynamic forces acting on these models, across particle Reynolds numbers from 38 to 603. The vortex size, pressure coefficient and streamwise speed in the wake zones in the xoz plane (The z-axis coincides with the symmetry axis of the pappus structure.), the pressure coefficient, radial speed and streamwise speed in the xoy plane, the drag coefficient of the entire pappus model, and the aerodynamic force acting on a single filament were quantitatively analyzed and compared across the five models. It reveals that the radial change in filament diameter indeed results in the variations in these physical quantities among the five models. The variations can be significantly influenced by the particle Reynolds number, although these physical quantities exhibit different degrees of sensitivity. Our findings here will enhance the modeling of dandelion seed dispersal by wind and aid in optimizing the design of micro aircraft inspired by the architecture of real dandelion seed pappus structures.

1.
L.
Wang
,
G.
Liu
, and
S.
Li
, “
Attaching of dandelion seeds: Results from morphology/structure and abscission force/angle
,”
Bioinspir. Biomim. Nanobiomater.
12
(
2
),
52
60
(
2023
).
2.
Q.
Meng
,
Q.
Wang
,
H.
Liu
, and
L.
Jiang
, “
A bio-inspired flexible fiber array with an open radial geometry for highly efficient liquid transfer
,”
NPG Asia Mater.
6
(
9
),
e125
e125
(
2014
).
3.
Y. L.
Han
,
M.
Li
,
Q.
Yang
,
G.
Huang
,
H.
Liu
,
Y.
Qin
,
G. M.
Genin
,
F.
Li
,
T. J.
Lu
, and
F.
Xu
, “
Collective wetting of a natural fibrous system and its application in pump‐free droplet transfer
,”
Adv. Funct. Mater.
27
(
22
),
1606607
(
2017
).
4.
Q. A.
Meng
,
Q.
Wang
,
K.
Zhao
,
P.
Wang
,
P.
Liu
,
H.
Liu
, and
L.
Jiang
, “
Hydroactuated configuration alteration of fibrous dandelion pappi: Toward self‐controllable transport behavior
,”
Adv. Funct. Mater.
26
(
41
),
7378
7385
(
2016
).
5.
M.
Seale
,
A.
Kiss
,
S.
Bovio
,
I. M.
Viola
,
E.
Mastropaolo
,
A.
Boudaoud
, and
N.
Nakayama
, “
Dandelion pappus morphing is actuated by radially patterned material swelling
,”
Nat. Commun.
13
(
1
),
2498
(
2022
).
6.
M.
Seale
,
O.
Zhdanov
,
M. B.
Soons
,
C.
Cummins
,
E.
Kroll
,
M. R.
Blatt
,
H.
Zare-Behtash
,
A.
Busse
,
E.
Mastropaolo
,
J. M.
Bullock
,
I. M.
Viola
, and
N.
Nakayama
, “
Environmental morphing enables informed dispersal of the dandelion diaspore
,”
Elife
11
,
e81962
(
2022
).
7.
F. S.
Qiu
,
H. Y.
Qian
,
Y. M.
Du
, and
C. J.
Li
, “
The pappus angle as a key factor in the entire separation of a vortex ring from a dandelion seed's pappus
,”
Phys. Fluids
34
(
8)
,
083101
(
2022
).
8.
L. T.
Fu
,
Q.
Fan
,
Z. L.
Huang
, and
F.
Chen
, “
Flow pattern change and drag coefficient enhancement for non-flattened pappus models due to reversed wind direction
,”
Acta Mech. Sin.
40
(
5
),
323619
(
2024
).
9.
L.
Qin
,
Z.
Jian
,
Y.
Xu
, and
L.
Ma
, “
On the attitude stability of flying dandelion seeds
,”
Phys. Fluids
35
(
8)
,
081904
(
2023
).
10.
S.
Li
,
D.
Pan
,
L.
Zeng
,
J.
Li
, and
X.
Shao
, “
Flow over a radiating multi-filamentous structure with various opening angles: From disk-like to cone-like shape
,”
Phys. Fluids
36
(
3)
,
033622
(
2024
).
11.
B. H.
Kim
,
K.
Li
,
J. T.
Kim
,
Y.
Park
,
H.
Jang
,
X.
Wang
,
Z.
Xie
,
S.
Won
,
W. J.
Jang
,
K. H.
Lee
et al, “
Three-dimensional electronic microfliers inspired by wind-dispersed seeds
,”
Nature
597
(
7877
),
503
510
(
2021
).
12.
V.
Iyer
,
H.
Gaensbauer
,
T. L.
Daniel
, and
S.
Gollakota
, “
Wind dispersal of battery-free wireless devices
,”
Nature
603
(
7901
),
427
433
(
2022
).
13.
J.
Yang
,
H.
Zhang
,
A.
Berdin
,
W.
Hu
, and
H.
Zeng
, “
Dandelion‐inspired, wind‐dispersed polymer‐assembly controlled by light
,”
Adv. Sci.
10
(
7
),
2206752
(
2023
).
14.
Y.
Chen
,
C.
Valenzuela
,
X.
Zhang
,
X.
Yang
,
L.
Wang
, and
W.
Feng
, “
Light-driven dandelion-inspired microfliers
,”
Nat. Commun.
14
(
1
),
3036
(
2023
).
15.
J. T.
Kim
,
H. J.
Yoon
,
S.
Cheng
,
F.
Liu
,
S.
Kang
,
S.
Paudel
,
D.
Cho
,
H.
Luan
,
M.
Lee
,
G.
Jeong
et al, “
Functional bio-inspired hybrid fliers with separated ring and leading edge vortices
,”
PNAS Nexus
3
(
3)
,
110
(
2024
).
16.
C.
Cummins
,
M.
Seale
,
A.
Macente
,
D.
Certini
,
E.
Mastropaolo
,
I. M.
Viola
, and
N.
Nakayama
, “
A separated vortex ring underlies the flight of the dandelion
,”
Nature
562
(
7727
),
414
418
(
2018
).
17.
Z.
Xu
,
X.
Chang
,
H.
Meng
, and
D.
Gao
, “
Dynamic wake behind a dandelion pappus: PIV and smoke-wire visualization
,”
J. Vis.
26
(
4
),
779
794
(
2023
).
18.
F. S.
Qiu
,
B. W.
Wang
,
Y. M.
Du
, and
H. Y.
Qian
, “
Numerical investigation on the flow characteristics of model dandelion seeds with angles of attitude
,”
Phys. Fluids
33
(
11
),
113107
(
2021
).
19.
P. G.
Ledda
,
L.
Siconolfi
,
F.
Viola
,
S.
Camarri
, and
F.
Gallaire
, “
Flow dynamics of a dandelion pappus: A linear stability approach
,”
Phys. Rev. Fluids
4
(
7
),
071901
(
2019
).
20.
F. S.
Qiu
,
T. B.
He
, and
W. Y.
Bao
, “
Effect of porosity on separated vortex rings of dandelion seeds
,”
Phys. Fluids
32
(
11
),
113104
(
2020
).
21.
Q.
Fan
,
L. T.
Fu
,
Z. L.
Huang
,
C. L.
Xin
, and
H. H.
Gu
, “
Flow patterns and drag coefficients of dandelion pappus models consisting of two oppositely oriented filament layers
,”
Phys. Fluids
36
(
7)
,
075198
(
2024
).
22.
S.
Li
,
D.
Pan
,
J.
Li
, and
X.
Shao
, “
Drag and wake structure of a quasi-dandelion pappus model at low and moderate Reynolds numbers: The effects of filament width
,”
Phys. Fluids
33
(
12
),
121904
(
2021
).
23.
Y.
Dong
,
K.
Hu
,
Y.
Wang
, and
Z.
Zhang
, “
The steady vortex and enhanced drag effects of dandelion seeds immersed in low-Reynolds-number flow
,”
AIP Adv.
11
(
8
),
085320
(
2021
).
24.
Y.
Dong
,
Y.
Ni
,
K.
Hu
,
T.
Zhang
,
Z.
Zhang
, and
Y.
Wang
, “
Transition to turbulence in the wake of dandelion-like spoke disk
,”
Phys. Fluids
35
(
10
),
104113
(
2023
).
25.
L. T.
Fu
,
Q.
Fan
, and
Z. L.
Huang
, “
Wind speed acceleration around a single low solid roughness in atmospheric boundary layer
,”
Sci. Rep.
9
(
1
),
12002
(
2019
).
26.
F. R.
Menter
, “
Two-equation eddy-viscosity turbulence models for engineering applications
,”
AIAA J.
32
(
8
),
1598
1605
(
1994
).
27.
Ansys,
® Fluent, Release 15.0. Fluent Theory Guide
(
ANSYS Inc
.,
Canonsburg
,
2013
).
28.
E.
Barta
and
D.
Weihs
, “
Creeping flow around a finite row of slender bodies in close proximity
,”
J. Fluid Mech.
551
,
1
17
(
2006
).
29.
R. A.
Bagnold
,
The Physics of Blown Sand and Desert Dunes
(
Methuen
,
New York
,
1941
).
30.
M.
Creyssels
,
P.
Dupont
,
A. O.
El Moctar
,
A.
Valance
,
I.
Cantat
,
J. T.
Jenkins
,
J. M.
Pasini
, and
K. R.
Rasmussen
, “
Saltating particles in a turbulent boundary layer: Experiment and theory
,”
J. Fluid Mech.
625
,
47
74
(
2009
).
31.
L. T.
Fu
,
T. L.
Bo
,
H. H.
Gu
, and
X. J.
Zheng
, “
Incident angle of saltating particles in wind-blown sand
,”
PLoS One
8
(
7
),
e67935
(
2013
).
32.
T. L.
Bo
,
L. T.
Fu
,
L.
Liu
, and
X. J.
Zheng
, “
An improved numerical model suggests potential differences of wind‐blown sand between on Earth and Mars
,”
J. Geophys. Res. Atmos.
122
(
11
),
5823
5836
, https://doi.org/10.1002/2016JD026132 (
2017
).
You do not currently have access to this content.