Parameterized optimization methods are effective approaches for achieving high aerodynamic performance in compressors. Traditional parameterized optimization methods rely on a designer's preselected control parameter layout (including control frame orientation, point density distribution, control point displacement direction, number of variables, and variable ranges), which are purely based on empirical knowledge without sufficient theoretical basis. This paper selects the free-form deformation (FFD) method and Bayesian algorithm as the parameterization method and optimization algorithm for compressor airfoil optimization and studies the influence of FFD control parameter layouts on aerodynamic optimization performance. Additionally, an adaptive optimization method for control parameters based on FFD is proposed, where the orientation and density of the control framework can be incorporated as variables into the control parameters. During the optimization process, the range of design variables is adaptively expanded. A comparison between FFD optimization results based on B-spline and Bernstein basis functions shows that the former achieves an average performance improvement of 4% relative to the latter. Furthermore, an optimization method with an infinitely expandable boundary based on Bernstein basis FFD is proposed, which improves the performance by 12% compared to general adaptive boundary expansion methods.

1.
J.
Cheng
,
C.
Jiang
, and
H.
Xiang
, “
A surface parametric control and global optimization method for axial flow compressor blades
,”
Chin. J. Aeronaut.
32
(
7
),
1618
1634
(
2019
).
2.
J.
Cheng
,
Y.
Zhang
,
J.
Chen
et al, “
Compressor airfoil optimization method driven by data-mechanism integration based on evolutionary multi-tasking algorithm
,”
Aerosp. Sci. Technol.
148
,
108999
(
2024
).
3.
M.
Ceze
,
M.
Hayashi
, and
E.
Volpe
, “
A study of the CST parameterization characteristics
,” AIAA Paper No. 2009-3767,
2009
.
4.
H.
Su
,
L.
Gu
, and
C.
Gong
, “
Research on geometry modeling method based on three-dimensional CST parameterization technology
,” AIAA Paper No. 2015-3241,
2015
.
5.
Z.
Dong
,
J.
Cheng
,
T.
Liu
et al, “
A novel surface parametric method and its application to aerodynamic design optimization of axial compressors
,”
Processes
9
(
7
),
1230
(
2021
).
6.
J.
Cheng
,
S.
Zhao
,
Z.
Dong
et al, “
Design optimization of a multistage axial flow compressor based on full
blade surface parameterization and phased strategy
,”
Int. J. Aerosp. Eng.
2021
(
1
),
1–25
.
7.
J.
Cheng
,
C.
Yang
, and
S.
Zhao
, “
A phased aerodynamic optimization method for compressors based on multi-degrees-of-freedom surface parameterization
,”
J. Therm. Sci.
30
(
6
),
2071
2086
(
2021
).
8.
S.
Chuanrui
,
J.
Cheng
,
Z.
Zhengqing
et al, “
An intuitive parameterization method with inherently high-order differentiability for compressor blade sections based on ellipse hierarchical deformation
,”
Chin. J. Aeronaut.
36
(
8
),
74
90
(
2023
).
9.
Z.
Chi
,
W.
Chu
,
H.
Zhang
et al, “
Stall margin evaluation and data mining based multi-objective optimization design of casing treatment for an axial compressor rotor
,”
Phys. Fluids
35
(
8
),
086117
(
2023
).
10.
L.
Song
,
Z.
Guo
,
J.
Li
et al, “
Research on metamodel-based global design optimization and data mining methods
,”
J. Eng. Gas Turbines Power
138
(
9
),
092604
(
2016
).
11.
D.
Yanhui
,
W. U.
Wenhua
,
P.
Zhang
et al, “
Performance improvement of optimization solutions by POD-based data mining
,”
Chin. J. Aeronaut.
32
(
4
),
826
838
(
2019
).
12.
S.
Bunnell
,
C.
Thelin
,
S.
Gorrell
et al, “
Rapid visualization of compressor blade finite element models using surrogate modeling
,” in
Turbo Expo: Power for Land, Sea, and Air (American Society of Mechanical Engineers
,
2018
), Paper No. V07AT30A011.
13.
D.
Hu
,
J.
Mao
,
R.
Wang
et al, “
Optimization strategy for a shrouded turbine blade using variable-complexity modeling methodology
,”
AIAA J.
54
(
9
),
2808
2818
(
2016
).
14.
Ł.
Witanowski
,
P.
Ziółkowski
,
P.
Klonowicz
et al, “
A hybrid approach to optimization of radial inflow turbine with principal component analysis
,”
Energy
272
,
127064
(
2023
).
15.
K.
Yonekura
and
O.
Watanabe
, “
A shape parameterization method using principal component analysis in applications to parametric shape optimization
,”
J. Mech. Des.
136
(
12
),
121401
(
2014
).
16.
J. Q.
Luo
,
Y. L.
Zhu
,
X.
Tang
et al, “
Flow reconstructions and aerodynamic shape optimization of turbomachinery blades by POD-based hybrid models
,”
Sci. China: Technol. Sci.
60
,
1658
1673
(
2017
).
17.
X. B.
Chen
,
R. H.
Zhang
, and
W. F.
Yang
, “
Inverse design and optimization of low specific speed centrifugal pump blade based on adaptive pod hybrid model
,”
J. Appl. Fluid Mech.
15
(
2
),
453
464
(
2022
).
18.
W.
Chen
,
K.
Chiu
, and
M. D.
Fuge
, “
Airfoil design parameterization and optimization using Bézier generative adversarial networks
,”
AIAA J.
58
(
11
),
4723
4735
(
2020
).
19.
Y.
Shen
,
W.
Huang
,
L.
Yan
et al, “
An automatic visible explainer of geometric knowledge for aeroshape design optimization based on SHAP
,”
Aerosp. Sci. Technol.
131
,
107993
(
2022
).
20.
C.
Wang
,
S.
Wang
,
L.
Wang
et al, “
Framework of nacelle inverse design method based on improved generative adversarial networks
,”
Aerosp. Sci. Technol.
121
,
107365
(
2022
).
21.
Z.
Wei
,
P.
Fua
, and
M.
Bauerheim
, “
Automatic parameterization for aerodynamic shape optimization via deep geometric learning
,” AIAA Paper No. 2023-3471,
2023
.
22.
C.
Wang
,
Z.
Gao
,
W.
Zhang
et al, “
Efficient surrogate-based aerodynamic optimization design method with adaptive design space expansion
,”
Acta Aeronaut. Astronaut. Sin.
39
(
7
),
121745
(
2018
).
23.
W.
Zhang
,
Z.
Gao
,
L.
Zhou
, and
L.
Xia
, “
Adaptive parameterization method based on global optimization of surrogate models
,”
Acta Aeronaut. Astronaut. Sin.
41
(
10
),
123815
(
2020
).
24.
X.
He
,
Adaptive Aerodynamic Shape Optimization Method for Multi-Component Civil Transport Aircraft
(
Northwestern Polytechnical University
,
2022
).
25.
G. R.
Anderson
,
M.
Nemec
, and
M. J.
Aftosmis
, “
Aerodynamic shape optimization benchmarks with error control and automatic parameterization
,” AIAA Paper No. 2015-1719,
2015
.
26.
G. R.
Anderson
and
M. J.
Aftosmis
, “
Adaptive shape control for aerodynamic design
,” AIAA Paper No. 2015-0398,
2015
.
27.
G. M.
Streuber
and
D. W.
Zingg
, “
Dynamic geometry control for robust aerodynamic shape optimization
,” AIAA Paper No. 2021-3031,
2021
.
28.
G. M.
Streuber
and
D. W.
Zingg
, “
Improved dynamic geometry control algorithms for efficient aerodynamic shape optimization
,”
AIAA J.
61
(
5
),
2116
2134
(
2023
).
29.
H.
Xiang
and
J.
Chen
, “
Aerothermodynamics optimal design of a multistage axial compressor in a gas turbine using directly manipulated free-form deformation
,”
Case Stud. Therm. Eng.
26
,
101142
(
2021
).
30.
R. A.
Adjei
,
W. Z.
Wang
, and
Y. Z.
Liu
, “
Aerodynamic design optimization of an axial flow compressor stator using parameterized free-form deformation
,”
J. Eng. Gas Turbines Power
141
(
10
),
101015
(
2019
).
31.
A.
John
,
S.
Shahpar
, and
N.
Qin
, “
Novel compressor blade shaping through a free-form method
,”
J. Turbomach.
139
(
8
),
081002
(
2017
).
32.
H.
Hu
,
Y.
Song
,
J.
Yu
et al, “
The application of support vector regression and virtual sample generation technique in the optimization design of transonic compressor
,”
Aerosp. Sci. Technol.
130
,
107814
(
2022
).
33.
Y.
He
,
Q.
Gui
, and
J.
Luo
, “
An efficient parallel multi-fidelity multi-objective Bayesian optimization method and application to 3-stage axial compressor with 144 variables
,”
Aerosp. Sci. Technol.
150
,
109235
(
2024
).
34.
A.
Kumar
,
S.
Patil
,
A.
Kovacevic
et al, “
Performance prediction and Bayesian optimization of screw compressors using Gaussian process regression
,”
Eng. Appl. Artif. Intell.
133
,
108270
(
2024
).
You do not currently have access to this content.