The bogie-induced flow characteristics of two referenced variations of a streamlined high-speed train model, with and without bogie shields, are numerically studied by performing improved delayed detached eddy simulation. The results show that covering the bogies reduces the overall aerodynamic drag by 45%, primarily due to a significant reduction in pressure drag caused by the smoother underbody. While a localized increase in slipstream velocity is observed near the train's rear, the wake activity is diminished, resulting in a substantial drop in the nondimensional slipstream velocity to approximately 0.01 in the wake region, with decreases of 93% and 80% at a height of z* = 0.11 and 0.44, respectively. Additionally, the maximum turbulence intensity downstream of the bogie region decreased by 97% and the lateral motion of wake vortices was found to stabilize, with dominant frequencies occurring at StW = 0.139 and 0.425. These findings provide good references for the aerodynamic assessment of future high-speed trains.

1.
Baker
,
C. J.
, “
The flow around high speed trains
,”
J. Wind Eng. Ind. Aerodyn.
98
(
6
),
277
298
(
2010
).
2.
Baker
,
C. J.
, “
A review of train aerodynamics Part 1—Fundamentals
,”
Aeronaut. J.
118
(
1201
),
201
228
(
2014
).
3.
Baker
,
C. J.
,
Train Aerodynamics: Fundamentals and Applications
(
Butterworth-Heinemann
,
2019
).
4.
Bell
,
J. R.
,
Burton
,
D.
,
Thompson
,
M. C.
,
Herbst
,
A. H.
, and
Sheridan
,
J.
, “
Moving model analysis of the slipstream and wake of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
136
,
127
137
(
2015
).
5.
Bell
,
J. R.
,
Burton
,
D.
,
Thompson
,
M. C.
,
Herbst
,
A. H.
, and
Sheridan
,
J.
, “
A wind-tunnel methodology for assessing the slipstream of high-speed trains
,”
J. Wind Eng. Ind. Aerodyn.
166
,
1
19
(
2017
).
6.
Brockie
,
N. J. W.
and
Baker
,
C. J.
, “
The aerodynamic drag of high speed trains
,”
J. Wind Eng. Ind. Aerodyn.
34
(
3
),
273
290
(
1990
).
7.
CEN European Standard
,
Railway applications. Aerodynamics—Part 6: Requirements and test procedures for cross wind assessment
Standard No. CEN EN 14067-6-2018
(CEN European Standard
,
2018
).
8.
CEN European Standard
, “
Railway applications. Aerodynamics—Part 4: Requirements and assessment procedures for aerodynamics on open track
,” Standard No. CEN EN 14067-4-2024 (
CEN European Standard
,
2024
)
9.
Chen
,
G.
,
Li
,
X.
,
Zhang
,
L.
,
Liang
,
X.
,
Meng
,
S.
, and
Zhou
,
D.
, “
Numerical analysis of the effect of train length on train aerodynamic performance
,”
AIP Adv.
12
(
2
),
025201
(
2022
).
10.
Cui
,
H.
,
Chen
,
G.
,
Guan
,
Y.
, and
Deng
,
W.
, “Study on Aerodynamic Drag Reduction at Tail of 400 km/h EMU with Air Suction-Blowing Combination,”
Machines
11
(
2
),
222
(
2023
).
11.
Dai
,
Z.
,
Li
,
T.
,
Zhang
,
W.
, and
Zhang
,
J.
, “
Investigation on aerodynamic characteristics of high-speed trains with shields beneath bogies
,”
J. Wind Eng. Ind. Aerodyn.
246
,
105666
(
2024
).
12.
Deng
,
E.
,
Liu
,
X. Y.
,
Yue
,
H.
,
Yang
,
W. C.
,
Ouyang
,
D. H.
, and
Ni
,
Y. Q.
, “
How do dunes along a desert urban motorway affect the driving safety of sedans? Evidences from long- and short-term monitoring and IDDES
,”
J. Wind Eng. Ind. Aerodyn.
243
,
105595
(
2023
).
13.
Deng
,
E.
,
Liu
,
Y. K.
,
Yang
,
W. C.
, and
Ni
,
Y. Q.
, “
Reproducing the flight behavior of falling debris from railway tunnel vault using a high-speed train ejection experiment and moving-overset-mesh simulation
,”
Tunnelling Underground Space Technol.
147
,
105670
(
2024
).
14.
Deng
,
E.
,
Yue
,
H.
,
Liu
,
X. Y.
, and
Ni
,
Y. Q.
, “
Aerodynamic impact of wind-sand flow on moving trains in tunnel-embankment transition section: From field testing to CFD modeling
,”
Eng. Appl. Comput. Fluid Mech.
17
(
1
),
2279993
(
2023
).
15.
Dong
,
T.
,
Liang
,
X.
,
Krajnović
,
S.
,
Xiong
,
X.
, and
Zhou
,
W.
, “
Effects of simplifying train bogies on surrounding flow and aerodynamic forces
,”
J. Wind Eng. Ind. Aerodyn.
191
,
170
182
(
2019
).
16.
Dong
,
T.
,
Minelli
,
G.
,
Wang
,
J.
,
Liang
,
X.
, and
Krajnović
,
S.
, “
Numerical investigation of a high-speed train underbody flows: Studying flow structures through large-eddy simulation and assessment of steady and unsteady Reynolds-averaged Navier–Stokes and improved delayed detached eddy simulation performance
,”
Phys. Fluids
34
(
1
),
015126
(
2022
).
17.
Gao
,
G.
,
Li
,
F.
,
He
,
K.
,
Wang
,
J.
,
Zhang
,
J.
, and
Miao
,
X.
, “
Investigation of bogie positions on the aerodynamic drag and near wake structure of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
185
,
41
53
(
2019
).
18.
Gritskevich
,
M. S.
,
Garbaruk
,
A. V.
,
Schütze
,
J.
, and
Menter
,
F. R.
, “
Development of DDES and IDDES formulations for the k-ω shear stress transport model
,”
Flow, Turbul. Combust.
88
(
3
),
431
449
(
2012
).
19.
Guo
,
Z.
,
Liu
,
T.
,
Chen
,
Z.
,
Xia
,
Y.
,
Li
,
W.
, and
Li
,
L.
, “
Aerodynamic influences of bogie's geometric complexity on high-speed trains under crosswind
,”
J. Wind Eng. Ind. Aerodyn.
196
,
104053
(
2020
).
20.
He
,
K.
,
Minelli
,
G.
,
Wang
,
J.
,
Gao
,
G.
, and
Krajnović
,
S.
, “
Assessment of LES, IDDES and RANS approaches for prediction of wakes behind notchback road vehicles
,”
J. Wind Eng. Ind. Aerodyn.
217
,
104737
(
2021
).
21.
He
,
K.
,
Su
,
X.
,
Gao
,
G.
, and
Krajnović
,
S.
, “
Evaluation of LES, IDDES and URANS for prediction of flow around a streamlined high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
223
,
104952
(
2022
).
22.
Krajnović
,
S.
and
Davidson
,
L.
, “
Flow around a simplified car, Part 2: Understanding the flow
,”
J. Fluids Eng.
127
(
5
),
919
928
(
2005
).
23.
Li
,
X.
,
Chen
,
G.
,
Zhou
,
D.
, and
Chen
,
Z.
, “
Impact of different nose lengths on flow-field structure around a high-speed train
,”
Appl. Sci.
9
(
21
),
4573
(
2019
).
24.
Li
,
X. B.
,
Liang
,
X. F.
,
Wang
,
Z.
,
Xiong
,
X. H.
,
Chen
,
G.
,
Yu
,
Y. Z.
, and
Chen
,
C. M.
, “
On the correlation between aerodynamic drag and wake flow for a generic high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
215
,
104698
(
2021
).
25.
Li
,
Z.
,
Yang
,
M.
,
Huang
,
S.
, and
Zhou
,
D.
, “
A new moving model test method for the measurement of aerodynamic drag coefficient of high-speed trains based on machine vision
,”
Proc. Inst. Mech. Eng., Part F
232
(
5
),
1425
1436
(
2018
).
26.
Ligrani
,
P. M.
and
Bradshaw
,
P.
, “
Subminiature hot-wire sensors: Development and use
,”
J. Phys. E
20
(
3
),
323
(
1987
).
27.
Liu
,
W.
,
Guo
,
D.
,
Zhang
,
Z.
,
Chen
,
D.
, and
Yang
,
G.
, “
Effects of bogies on the wake flow of a high-speed train
,”
Appl. Sci.
9
(
4
),
759
(
2019
).
28.
Liu
,
W.
,
Ji
,
Z.
,
Guo
,
D.
,
Yang
,
G.
,
Zhou
,
G.
, and
Ren
,
K.
, “
Effects of bottom deflectors on aerodynamic drag reduction of a high-speed train
,”
Acta Mech. Sin.
38
(
5
),
321251
(
2022
).
29.
Liu
,
Y. K.
,
Deng
,
E.
,
Yang
,
W. C.
,
Wang
,
Y. W.
,
He
,
X. H.
,
Huang
,
Y. M.
, and
Zou
,
Y. F.
, “
Nonlinear aerodynamic effects of three new types of high-speed railway acoustic insulation facilities using a model experiment and IDDES
,”
Nonlinear Dyn.
111
(
19
),
17819
17841
(
2023
).
30.
Lukaszewicz
,
P.
, “
A simple method to determine train running resistance from full-scale measurements
,”
Proc. Inst. Mech. Eng., Part F
221
(
3
),
331
337
(
2007
).
31.
Mancini
,
G.
,
Malfatti
,
A.
,
Violi
,
A. G.
, and
Matschke
,
G.
, “
Effects of experimental bogie fairings on the aerodynamic drag of the ETR 500 high speed train
,” in
World Congress on Railway Research (WCRR)
,
Köln, Germany
,
2001
.
32.
Meng
,
S.
,
Li
,
X.
,
Chen
,
G.
,
Zhou
,
D.
,
Chen
,
Z.
, and
Krajnovic
,
S.
, “
Numerical simulation of slipstreams and wake flows of trains with different nose lengths passing through a tunnel
,”
Tunnelling Underground Space Technol.
108
,
103701
(
2021
).
33.
Meng
,
S.
,
Zhou
,
D.
,
Xiong
,
X.
, and
Chen
,
G.
, “
The effect of the nose length on the aerodynamics of a high-speed train passing through a noise barrier
,”
Flow, Turbul. Combust.
108
(
2
),
411
431
(
2022
).
34.
Muld
,
T. W.
,
Efraimsson
,
G.
, and
Henningson
,
D. S.
, “
Flow structures around a high-speed train extracted using Proper Orthogonal Decomposition and Dynamic Mode Decomposition
,”
Comput. Fluids
57
,
87
97
(
2012
).
35.
Östh
,
J.
,
Kaiser
,
E.
,
Krajnović
,
S.
, and
Noack
,
B. R.
, “
Cluster-based reduced-order modelling of the flow in the wake of a high speed train
,”
J. Wind Eng. Ind. Aerodyn.
145
,
327
338
(
2015
).
36.
Raghunathan
,
R. S.
,
Kim
,
H. D.
, and
Setoguchi
,
T.
, “
Aerodynamics of high-speed railway train
,”
Prog. Aerosp. Sci.
38
(
6
),
469
514
(
2002
).
37.
Rochard
,
B. P.
and
Schmid
,
F.
, “
A review of methods to measure and calculate train resistances
,”
Proc. Inst. Mech. Eng., Part F
214
(
4
),
185
199
(
2000
).
38.
Schetz
,
J. A.
, “
Aerodynamics of high-speed trains
,”
Annu. Rev. Fluid Mech.
33
,
371
414
(
2001
).
39.
Su
,
X.
,
He
,
K.
,
Xu
,
K.
,
Gao
,
G.
, and
Krajnović
,
S.
, “
Comparison of flow characteristics behind squareback bluff-bodies with and without wheels
,”
Phys. Fluids
35
(
3
),
035114
(
2023
).
40.
Sun
,
Z.
,
Yao
,
S.
, and
Yang
,
G.
, “
Research on aerodynamic optimization of high-speed train's slipstream
,”
Eng. Appl. Comput. Fluid Mech.
14
(
1
),
1106
1127
(
2020
).
41.
Tian
,
H.
, “
Review of research on high-speed railway aerodynamics in China
,”
Transp. Saf. Environ.
1
(
1
),
1
21
(
2019
).
42.
Tian
,
H. Q.
,
Huang
,
S.
, and
Yang
,
M. Z.
, “
Flow structure around high-speed train in open air
,”
J. Cent. South Univ.
22
(
2
),
747
752
(
2015
).
43.
Wang
,
J.
,
Minelli
,
G.
,
Miao
,
X.
,
Zhang
,
J.
,
Wang
,
T.
,
Gao
,
G.
, and
Krajnović
,
S.
, “
The effect of bogie positions on the aerodynamic behavior of a high-speed train: An IDDES study
,”
Flow, Turbul. Combust.
107
(
2
),
257
282
(
2021
).
44.
Wang
,
S.
,
Burton
,
D.
,
Herbst
,
A.
,
Sheridan
,
J.
, and
Thompson
,
M. C.
, “
The effect of bogies on high-speed train slipstream and wake
,”
J. Fluids Struct.
83
,
471
489
(
2018
).
45.
Wu
,
Y.
,
Zhou
,
W.
,
Liang
,
X.
,
Chen
,
D.
,
Su
,
X.
,
Li
,
X.
,
Wu
,
F.
, and
Krajnović
,
S.
, “
Numerical and experiment study on ventilation performance of the equipment compartment of Alpine high-speed train
,”
Eng. Appl. Comput. Fluid Mech.
17
(
1
),
2252514
(
2023
).
46.
Wu
,
Y.
,
Zhou
,
W.
,
Liang
,
X.
,
Su
,
X.
,
Xu
,
K.
,
Xia
,
Y.
,
Wang
,
Z.
, and
Krajnović
,
S.
, “
Influence of trains meeting on the ventilation performance of equipment compartment with independent air duct in high-speed train: Numerical and experimental study
,”
Railw. Eng. Sci.
33
(
1
) (
2024
).
47.
Xia
,
C.
,
Wang
,
H.
,
Shan
,
X.
,
Yang
,
Z.
, and
Li
,
Q.
, “
Effects of ground configurations on the slipstream and near wake of a high-speed train
,”
J. Wind Eng. Ind. Aerodyn.
168
,
177
189
(
2017
).
48.
Xu
,
G.
,
Li
,
H.
,
Zhang
,
J.
, and
Liang
,
X.
, “
Effect of two bogie cavity configurations on the underbody flow and near wake structures of a high-speed train
,”
J. Appl. Fluid Mech.
12
(
6
),
1945
1955
(
2019
).
49.
Yao
,
Y.
,
Sun
,
Z.
,
Li
,
G.
,
Yang
,
G.
,
Prapamonthon
,
P.
,
Guo
,
Y.
, and
Wang
,
M.
, “
Aerodynamic optimization using passive control devices near the bogie cabin of high-speed trains
,”
Acta Mech. Sin.
38
(
9
),
321363
(
2022
).
50.
Zhang
,
J.
,
Adamu
,
A.
,
Gidado
,
F.
,
Tang
,
M.
,
Ozer
,
O.
, and
Chen
,
X.
, “
Flow control for aerodynamic drag reduction of a high-speed train with diversion slots on bogie regions
,”
Phys. Fluids
35
(
11
),
115111
(
2023
).
51.
Zhang
,
J.
,
Adamu
,
A.
,
Su
,
X.
,
Guo
,
Z.
, and
Gao
,
G.
, “
Effect of simplifying bogie regions on aerodynamic performance of high-speed train
,”
J. Cent. South Univ.
29
(
5
),
1717
1734
(
2022
).
52.
Zhou
,
Z.
,
Xia
,
C.
,
Shan
,
X.
, and
Yang
,
Z.
, “
The impact of bogie sections on the wake dynamics of a high-speed train
,”
Flow, Turbul. Combust.
104
(
1
),
89
113
(
2020
).
You do not currently have access to this content.