The problems associated with the calculation of streamlines in the analytical solutions of Oseen's equation for the creeping flow past cylinders and spheres are addressed in this paper. First, the analytical solutions to Oseen flow past cylinders and spheres are presented. Then, the solutions and their computer implementation are validated against existing data. To examine the correctness of the streamlines obtained as contours of the stream function, the true streamlines are calculated by directly integrating the velocity components. The comparison shows that the stream function proposed by past researchers is correct for the cylinder flow whereas it is incorrect for the sphere flow. Thus, the streamline patterns of the sphere flow as predicted by the stream function, both approximate and full formulations, are erroneous. In particular, it overpredicts the separation angle and the size of the recirculation zone. The correctness of the stream function for flow around a cylinder is mathematically proved. Additionally, it is rigorously shown why the stream function for flow around a sphere is incorrect. Specifically, the analysis shows that while the circumferential velocity component derived from the stream function is accurate for the cylinder, it is incorrect for the sphere.

1.
G. G.
Stokes
, “
On the effect of the internal friction of fluids on the motion of pendulums
,” in
Transactions of the Cambridge Philosophical Society
(
Nabu Press
,
1851
), Vol.
IX
, pp.
25
39
.
2.
C. W.
Oseen
, “
Über die Stokes'sche Formel und über eine verwandte Aufgabe in der Hydrodynamik
,”
Ark. Mat., Astron. Fys.
6
(
29
),
1
20
(
1910
); available at https://cir.nii.ac.jp/crid/1572261549999017600.
3.
C. W.
Oseen
,
Hydrodynamik, Akademische Verlagsgesellsehaft
(
Akademische Verlagsgesellschaft
,
1927
).
5.
S.
Goldstein
, “
The steady flow of viscous fluid past a fixed spherical obstacle at small Reynolds numbers
,”
Proc. R. Soc. London A
123
,
225
235
(
1929
).
6.
S.
Tomotika
and
T.
Aoi
, “
The steady flow of viscous fluid past a flow sphere and circular cylinder at small Reynolds numbers
,”
Q. J. Mech. AppI. Math.
3
,
140
161
(
1950
).
7.
H.
Yamada
, “
On the slow motion of viscous liquid past a circular cylinder
,”
Rep. Res. Inst. Appl. Mech.
3
,
11
23
(
1954
).
8.
T.
Pearcey
and
B.
McHugh
, “
LXXXVIII. Calculation of viscous flow around spheres at low Reynolds numbers
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
46
,
783
794
(
1955
).
9.
P. L.
Bhatnagar
and
P. D.
Verma
, “
On the steady flow of a viscous fluid past a sphere at small Reynolds numbers using Oseen's approximation
,”
J. Appl. Math. Phys.
12
,
546
558
(
1961
).
10.
I.
Proudman
and
J. R. A.
Pearson
, “
Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder
,”
J. Fluid Mech.
2
,
237
262
(
1957
).
11.
M.
van Dyke
, “
Extension of Goldstein's series for the Oseen drag of a sphere
,”
J. Fluid Mech.
44
,
365
372
(
1970
).
12.
M.
Bentwich
and
T.
Miloh
, “
The unsteady matched Stokes-Oseen solution for the flow past a sphere
,”
J. Fluid Mech.
88
,
17
32
(
1978
).
13.
C.
Hunter
and
S. M.
Lee
, “
The analytic structure of Oseen flow past a sphere as a function of Reynolds number
,”
SIAM J. Appl. Math.
46
,
978
999
(
1986
).
14.
S. C. R.
Dennis
and
S.
Kocabiyik
, “
The solution of two-dimensional Oseen flow problems using integral conditions
,”
IMA J. Appl. Math.
45
,
1
31
(
1990
).
15.
G.
Atefi
, “
Analytische Lösung der Oseenschen Differentialgleichung des quer angeströmten drehenden Zylinders bei Schlupf
,” Ph.D. dissertation (
Technische Universität Berlin
,
1990
).
16.
G.
Atefi
, “
Quer angeströmter drehender Zylinder bei kleinen Reynoldszahlen und bei Schlupf
,”
Arch. Appl. Mech.
61
,
488
502
(
1991
).
17.
A.
Moosaie
, “
Correction to: G. Atefi, Quer angeströmter drehender Zylinder bei kleinen Reynoldszahlen und bei Schlupf
,”
Arch. Appl. Mech.
92
,
3065
3066
(
2022
).
18.
J.
Gustafsson
and
B.
Protas
, “
On Oseen flows for large Reynolds numbers
,”
Theor. Comput. Fluid Dyn.
27
,
665
680
(
2013
).
19.
R.
Ouchene
, “
On the orientation dependence of the pressure and frictional drag experienced by spheroids in creeping flow
,”
Phys. Fluids
36
,
053603
(
2024
).
20.
H.-L.
Xu
,
C.-Y.
Wang
,
J.-C.
Lei
, and
C.-C.
Chang
, “
A multi-region analysis of unsteady Oseen's equation for accelerating flow past a circular cylinder
,”
Phys. Fluids
36
,
053604
(
2024
).
21.
A.
Moosaie
and
A.
Sharifian
, “
Numerical simulation of steady incompressible slip flow around a circular cylinder at low Reynolds numbers
,”
Acta Mech.
235
,
6791
6811
(
2024
).
22.
H. C.
Levey
, “
Heat transfer in slip flow at low Reynolds number
,”
J. Fluid Mech.
6
,
385
391
(
1959
).
23.
C. R.
Illingworth
, “
A note on fluctuating heat transfer at small Peclet numbers
,”
J. Fluid Mech.
7
,
442
448
(
1960
).
24.
H. G.
Davies
, “
Fluctuating heat transfer from hot wires in low Reynolds number flow
,”
J. Fluid Mech.
73
,
49
61
(
1976
).
25.
A.
Acrivos
and
T. D.
Taylor
, “
Heat and mass transfer from single spheres in Stokes flow
,”
Phys. Fluids
5
,
387
394
(
1962
).
26.
T. D.
Taylor
, “
Heat transfer from single spheres in a low Reynolds number slip flow
,”
Phys. Fluids
6
,
987
992
(
1963
).
27.
P. L.
Rimmer
, “
Heat transfer from a sphere in a stream of small Reynolds number
,”
J. Fluid Mech.
32
,
1
7
(
1968
).
28.
A.
Moosaie
, “
Stokes-type conjugate heat transfer and thermoelasticity analysis of a hollow spherical particle in a slip flow
,”
Int. Commun. Heat Mass Transfer
159
,
108110
(
2024
).
29.
H.
Lamb
, “
On the uniform motion of a sphere through a viscous fluid
,”
London Edinburgh Dublin Philos. Mag. J. Sci.
21
,
112
122
(
1911
).
30.
G. N.
Watson
,
A Treatise on the Theory of Bessel Functions
, 2nd ed. (
Cambridge University Press
,
1944
).
31.
I. G.
Currie
,
Fundamental Mechanics of Fluids
, 4th ed. (
CRC Press
,
2013
).
32.
P. K.
Kundu
and
I. M.
Cohen
,
Fluid Mechanics
, 3rd ed. (
Elsevier Press
,
2004
).
You do not currently have access to this content.