We introduce a hybrid framework to model the fluid dynamics of free convection condensation of saturated steam outside a circular cylinder. The liquid film is modeled analytically, and the adjacent vapor flow field is resolved numerically. The model incorporates temperature-dependent thermophysical properties of the condensate. We explore the subtle role of Jakob number (Ja) and Weber number (We) in the two-phase flow and establish the criteria for dynamic similarity of the flow field with two new dimensionless numbers, viz., free-fall Reynolds number and similarity number. For fixed base Prandtl number of the condensate, the increases in the subcooling rate with Ja and the cylinder's surface area to volume ratio with We cause film thickening. We develop a theoretical correlation to predict the average film thickness (δm). We identify entrainment and bypass zones in the vapor flow field demarcated by a separating streamline. The entrainment zone's streamlines converge to the interface, yielding a net condensate drainage. The bypass streamlines never reach the interface and reduce the condensation efficiency. The results show that the tangential velocity is dominant within the liquid film, the radial velocity is dominant within the vapor flow field, and they are of the same order at the interface. We locate the point of flow separation influenced by a surface tension-induced adverse pressure gradient. The location of the flow separation point shifts upstream, and the separating streamlines become steeper with the increase in We. Our investigation reveals the zone of tangential flow reversal near the interface, promoted with increasing We.

1.
B.
Bhushan
, “
Design of water harvesting towers and projections for water collection from fog and condensation
,”
Phil. Trans. R. Soc. A
378
,
20190440
(
2020
).
2.
M.-H.
Kim
and
J.-S.
Shin
, “
Condensation heat transfer of r22 and r410a in horizontal smooth and microfin tubes
,”
Int. J. Refrig.
28
,
949
957
(
2005
).
3.
A.
Bejan
,
Convection Heat Transfer
, 4th ed. (
John Wiley & Sons
,
2013
).
4.
W. M.
Rohsenow
, “
Heat transfer and temperature distribution in laminar film condensation
,”
Trans. ASME
78
,
1645
1648
(
1956
).
5.
W.
Nusselt
, “
Die oberflachenkondensation des wasserdamphes
,”
Z Ver. Dtsch. Ing.
60
,
541
546
(
1916
); available at http://ci.nii.ac.jp/naid/10014903553/en/.
6.
E.
Sparrow
and
J.
Gregg
, “
A boundary-layer treatment of laminar-film condensation
,”
ASME J. Heat Transfer
81
,
13
17
(
1959
).
7.
R. D.
Cess
, “
Laminar-film condensation on a flat plate in the absence of a body force
,”
J. Appl. Mathematics. Phys. (ZAMP).
11
,
426
433
(
1960
).
8.
J.
Koh
,
E. M.
Sparrow
, and
J.
Hartnett
, “
The two phase boundary layer in laminar film condensation
,”
Int. J. Heat Mass Transfer
2
,
69
82
(
1961
).
9.
I. G.
Shekriladze
and
V.
Gomelauri
, “
Theoretical study of laminar film condensation of flowing vapour
,”
Int. J. Heat Mass Transfer
9
,
581
591
(
1966
).
10.
H. R.
Jacobs
, “
An integral treatment of combined body force and forced convection in laminar film condensation
,”
Int. J. Heat Mass Transfer
9
,
637
648
(
1966
).
11.
J.
Koh
, “
Film condensation in a forced-convection boundary-layer flow
,”
Int. J. Heat Mass Transfer
5
,
941
954
(
1962
).
12.
H.
Schlichting
and
K.
Gersten
,
Boundary-Layer Theory
(
Springer Science & Business Media
,
2003
).
13.
F.
Tetsu
,
U.
Haruo
, and
K.
Chikatoshi
, “
Laminar filmwise condensation of flowing vapour on a horizontal cylinder
,”
Int. J. Heat Mass Transfer
15
,
235
246
(
1972
).
14.
C.
Bonneau
,
C.
Josset
,
V.
Melot
, and
B.
Auvity
, “
Comprehensive review of pure vapour condensation outside of horizontal smooth tubes
,”
Nucl. Eng. Des.
349
,
92
108
(
2019
).
15.
V. E.
Denny
and
A. F.
Mills
, “
Laminar film condensation of a flowing vapor on a horizontal cylinder at normal gravity
,”
J. Heat Transfer
91
,
495
501
(
1969
).
16.
M.
di Marzo
and
M. J.
Casarella
, “
Film condensation over a horizontal cylinder for combined gravity and forced flow
,”
J. Heat Transfer
107
,
687
695
(
1985
).
17.
E.
Gaddis
, “
Solution of the two phase boundary-layer equations for laminar film condensation of vapour flowing perpendicular to a horizontal cylinder
,”
Int. J. Heat Mass Transfer
22
,
371
382
(
1979
).
18.
L.
Berman
and
U.
Tumanov
, “
Issledovanie teplootdachi pri kondensatsii dvijushtshegosa para na gorizontalinoi trube
,”
Teploenergetika
10
,
77
83
(
1962
).
19.
S.
Kutateladze
and
I.
Gogonin
, “
Heat transfer in condensation of flowing vapour on a single horizontal cylinder
,”
Int. J. Heat Mass Transfer
28
,
1019
1030
(
1985
).
20.
W.
Lee
and
J.
Rose
, “
Forced convection film condensation on a horizontal tube with and without non-condensing gases
,”
Int. J. Heat Mass Transfer
27
,
519
528
(
1984
).
21.
A. G.
Michael
,
J. W.
Rose
, and
L. C.
Daniels
, “
Forced convection condensation on a horizontal tube—experiments with vertical downflow of steam
,”
J. Heat Transfer
111
,
792
797
(
1989
).
22.
L.
Zhang
,
S.
Yang
, and
H.
Xu
, “
Experimental study on condensation heat transfer characteristics of steam on horizontal twisted elliptical tubes
,”
Appl. Energy
97
,
881
887
(
2012
).
23.
H.
Ali
,
H.
Sheng Wang
,
A.
Briggs
, and
J. W.
Rose
, “
Effects of vapor velocity and pressure on Marangoni condensation of steam-ethanol mixtures on a horizontal tube
,”
J. Heat Transfer
135
,
031502
(
2013
).
24.
T. M.
Rudy
and
R. L.
Webb
, “
An analytical model to predict condensate retention on horizontal integral-fin tubes
,”
J. Heat Transfer
107
,
361
368
(
1985
).
25.
X.
Yan
,
F.
Chen
,
C.
Zhao
,
X.
Wang
,
L.
Li
,
S.
Khodakarami
,
K.
Fazle Rabbi
,
J.
Li
,
M. J.
Hoque
,
F.
Chen
et al, “
Microscale confinement and wetting contrast enable enhanced and tunable condensation
,”
ACS Nano
16
,
9510
9522
(
2022
).
26.
L.
Shan
,
Z.
Guo
,
D.
Monga
,
D.
Boylan
, and
X.
Dai
, “
Microchannel-elevated micromembrane for sustainable phase-separation condensation
,”
Joule
7
,
168
182
(
2023
).
27.
R. L.
Winter
,
E.
Olceroglu
,
Z.
Chen
,
K. K.
Lau
, and
M.
McCarthy
, “
Formation and stability of thin condensing films on structured amphiphilic surfaces
,”
Langmuir
37
,
2683
2692
(
2021
).
28.
A.
Malvandi
,
A.
Ghasemi
,
D.
Ganji
, and
I.
Pop
, “
Effects of nanoparticles migration on heat transfer enhancement at film condensation of nanofluids over a vertical cylinder
,”
Adv. Powder Technol.
27
,
1941
1948
(
2016
).
29.
A. S.
Wanniarachchi
,
P. J.
Marto
, and
J. W.
Rose
, “
Film condensation of steam on horizontal finned tubes: Effect of fin spacing
,”
J. Heat Transfer
108
,
960
966
(
1986
).
30.
J.
Rose
, “
Surface tension effects and enhancement of condensation heat transfer
,”
Chem. Eng. Res. Des.
82
,
419
429
(
2004
).
31.
A.
Briggs
and
J. W.
Rose
, “
An evaluation of models for condensation heat transfer on low-finned tubes
,”
J. Enh. Heat Transfer
6
,
51
60
(
1999
).
32.
T.
Wei
and
M.
Zhang
, “
Rayleigh–Taylor unstable condensing liquid layers with nonlinear effects of interfacial convection and diffusion of vapour
,”
J. Fluid Mech.
904
,
A1
(
2020
).
33.
Z.
Ding
and
T. N.
Wong
, “
Three-dimensional dynamics of thin liquid films on vertical cylinders with Marangoni effect
,”
Phys. Fluids
29
,
011701
(
2017
).
34.
H.
Ji
,
C.
Falcon
,
E.
Sedighi
,
A.
Sadeghpour
,
Y. S.
Ju
, and
A. L.
Bertozzi
, “
Thermally-driven coalescence in thin liquid film flowing down a fibre
,”
J. Fluid Mech.
916
,
A19
(
2021
).
35.
R.
Krupiczka
, “
Effect of surface tension on laminar film condensation on a horizontal cylinder
,”
Chem. Eng. Process.
19
,
199
203
(
1985
).
36.
A.
Jacobi
and
V.
Goldschmidt
, “
The effect of surface tension variation on filmwise condensation and heat transfer on a cylinder in cross flow
,”
Int. J. Heat Mass Transfer
32
,
1483
1490
(
1989
).
37.
Y.
Sheng-An
and
C.
Cha'o-Kuang
, “
Role of surface tension and ellipticity in laminar film condensation on a horizontal elliptical tube
,”
Int. J. Heat Mass Transfer
36
,
3135
3141
(
1993
).
38.
A.
Mandegari
,
M.-H.
Rahimian
,
A.
Jalali
, and
A.
Jafari
, “
Integration of Hertz–Knudsen–Schrage phase change in phase-field lattice Boltzmann method: Validation and parametric studies
,”
Phys. Fluids
36
,
073314
(
2024
).
39.
T. L.
Bergman
,
F. P.
Incropera
,
D. P.
Dewitt
, and
A. S.
Lavine
,
Fundamentals of Heat and Mass Transfer
(
John Wiley & Sons
,
2011
).
40.
U. K.
Kar
,
S.
Sengupta
, and
S.
Pramanik
, “
Dynamics of condensate film in the vicinity of a pulling vapor stream
,”
Phys. Fluids
34
,
123611
(
2022
).
41.
G.
Fang
and
C. A.
Ward
, “
Temperature measured close to the interface of an evaporating liquid
,”
Phys. Rev. E
59
,
417
(
1999
).
42.
P.
Shankar
and
M.
Deshpande
, “
On the temperature distribution in liquid–vapor phase change between plane liquid surfaces
,”
Phys. Fluids
2
,
1030
1038
(
1990
).
43.
Z.-Q.
Zhu
and
Q.-S.
Liu
, “
Interfacial temperature discontinuities in a thin liquid layer during evaporation
,”
Microgravity Sci. Technol.
25
,
243
249
(
2013
).
44.
Z.-Q.
Zhu
,
Q.-S.
Liu
, and
J.-C.
Xie
, “
Experimental study on the combined evaporation effect and thermocapillary convection in a thin liquid layer
,”
Microgravity Sci. Technol.
21
,
241
246
(
2009
).
45.
G.
Chen
, “
On the molecular picture and interfacial temperature discontinuity during evaporation and condensation
,”
Int. J. Heat Mass Transfer
191
,
122845
(
2022
).
46.
P.
Jafari
,
A.
Amritkar
, and
H.
Ghasemi
, “
Temperature discontinuity at an evaporating water interface
,”
J. Phys. Chem. C
124
,
1554
1559
(
2020
).
47.
J.
Young
, “
The condensation and evaporation of liquid droplets at arbitrary Knudsen number in the presence of an inert gas
,”
Int. J. Heat Mass Transfer
36
,
2941
2956
(
1993
).
48.
C.
Henderson
and
J.
Marchello
, “
Role of surface tension and tube diameter in film condensation on horizontal tubes
,”
AlChE. J.
13
,
613
614
(
1967
).
49.
ANSYS Fluent
, ANSYS Fluent Theory Guide v2022R2 (ANSYS, Inc., Canonsburg, PA,
2022a
), Vol.
15317
.
50.
P. J.
Roache
, “
Perspective: A method for uniform reporting of grid refinement studies
,”
J. Fluids Eng.
116
,
405
413
(
1994
).
51.
ANSYS Fluent
, ANSYS Fluent User's Guide v2022R2 (ANSYS, Inc., Canonsburg, PA,
2022b
), Vol.
15317
.
You do not currently have access to this content.