To assess the extensional properties of viscoelastic liquids with low viscosity, we explored a method employing a piezoelectric drop-on-demand (DOD) head. This method ejected polymer solutions of dilute concentrations, which offered a higher suitability than the liquid dripping (LD) method. An exponentially decaying regime of filament diameter was observed, like the elasto-capillary regime of the LD method. The established power law relation between extensional relaxation time and polymer solution concentration holds in the dilute regime. The findings indicate that the filament decay behaviors observed for the DOD method with jetting flow and the LD method with dripping flow are comparable.
REFERENCES
1.
S. L.
Anna
and
G. H.
McKinley
, “
Elasto-capillary thinning and breakup of model elastic liquids
,” J. Rheol.
45
, 115
–138
(2001
).2.
Y.
Amarouchene
,
D.
Bonn
,
J.
Meunier
, and
H.
Kellay
, “
Inhibition of the finite-time singularity during droplet fission of a polymeric fluid
,” Phys. Rev. Lett.
86
, 3558
–3561
(2001
).3.
G. H.
McKinley
, Visco-Elasto-Capillary Thinning and Break-Up of Complex Fluids
(
British Society of Rheology
,
Aberystwyth
,
UK
, 2005
).4.
J.
Dinic
,
L. N.
Jimenez
, and
V.
Sharma
, “
Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids
,” Lab Chip
17
, 460
–473
(2017
).5.
V.
Sharma
,
S. J.
Haward
,
J.
Serdy
,
B.
Keshavarz
,
A.
Soderlund
,
P.
Threlfall-Holmes
, and
G. H.
McKinley
, “
The rheology of aqueous solutions of ethyl hydroxy-ethyl cellulose (EHEC) and its hydrophobically modified analogue (hmEHEC): extensional flow response in capillary break-up, jetting (ROJER) and in a cross-slot extensional rheometer
,” Soft Matter
11
, 3251
–3270
(2015
).6.
E.
Miller
,
C.
Clasen
, and
J. P.
Rothstein
, “
The effect of step-stretch parameters on capillary breakup extensional rheology (CaBER) measurements
,” Rheol. Acta
48
, 625
–639
(2009
).7.
L.
Campo-Deaño
and
C.
Clasen
, “
The slow retraction method (SRM) for the determination of ultra-short relaxation times in capillary breakup extensional rheometry experiments
,” J. Non-Newtonian Fluid Mech.
165
, 1688
–1699
(2010
).8.
S.
Tamano
,
Y.
Ohashi
, and
Y.
Morinishi
, “
Dynamics of falling droplet and elongational properties of dilute nonionic surfactant solutions with drag-reducing ability
,” Phys. Fluids
29
, 053104
(2017
).9.
S.
Rajesh
,
V.
Thiévenaz
, and
A.
Sauret
, “
Transition to the viscoelastic regime in the thinning of polymer solutions
,” Soft Matter
18
, 3147
–3156
(2022
).10.
M.
Muto
,
K.
Kikuchi
,
T.
Yoshino
,
A.
Muraoka
,
S.
Iwata
,
M.
Nakamura
,
S.
Osuka
, and
S.
Tamano
, “
Rheological characterization of human follicular fluid under shear and extensional stress conditions
,” Front. Phys.
11
, 1308322
(2023
).11.
J.
Dinic
,
Y.
Zhang
,
L. N.
Jimenez
, and
V.
Sharma
, “
Extensional relaxation times of dilute, aqueous polymer solutions
,” ACS Macro Lett.
4
, 804
–808
(2015
).12.
J.
Dinic
and
V.
Sharma
, “
Flexibility, extensibility, and ratio of Kuhn length to packing length govern the pinching dynamics, coil-stretch transition, and rheology of polymer solutions
,” Macromolecules
53
, 4821
–4835
(2020
).13.
J.
Dinic
and
V.
Sharma
, “
Macromolecular relaxation, strain, and extensibility determine elastocapillary thinning and extensional viscosity of polymer solutions
,” Proc. Natl. Acad. Sci. U. S. A.
116
, 8766
–8774
(2019
).14.
W.
Mathues
,
S.
Formenti
,
C.
McIlroy
,
O. G.
Harlen
, and
C.
Clasen
, “
CaBER vs ROJER Different time scales for the thinning of a weakly elastic jet
,” J. Rheol.
62
, 1135
–1153
(2018
).15.
B.
Keshavarz
,
V.
Sharma
,
E. C.
Houze
,
M. R.
Koerner
,
J. R.
Moore
,
P. M.
Cotts
,
P.
Threlfall-Holmes
, and
G. H.
McKinley
, “
Studying the effects of elongational properties on atomization of weakly viscoelastic solutions using Rayleigh Ohnesorge Jetting Extensional Rheometry (ROJER)
,” J. Non-Newtonian Fluid Mech.
222
, 171
–189
(2015
).16.
P.
Schümmer
and
K.
Tebel
, “
A new elongational rheometer for polymer solutions
,” J. Non-Newtonian Fluid Mech.
12
, 331
–347
(1983
).17.
O.
Arnolds
,
H.
Buggisch
,
D.
Sachsenheimer
, and
N.
Willenbacher
, “
Capillary breakup extensional rheometry (CaBER) on semi-dilute and concentrated polyethyleneoxide (PEO) solutions
,” Rheol. Acta
49
, 1207
–1217
(2010
).18.
M.
Rosello
,
S.
Sur
,
B.
Barbet
, and
J. P.
Rothstein
, “
Dripping-onto-substrate capillary breakup extensional rheometry of low-viscosity printing inks
,” J. Non-Newtonian Fluid Mech.
266
, 160
–170
(2019
).19.
D.
Lohse
, “
Fundamental fluid dynamics challenges in inkjet printing
,” Annu. Rev. Fluid Mech.
54
, 349
–382
(2022
).20.
O. A.
Basaran
,
H.
Gao
, and
P. P.
Bhat
, “
Nonstandard inkjets
,” Annu. Rev. Fluid Mech.
45
, 85
–113
(2013
).21.
M. A.
Shah
,
A.
Muhammad
,
D. G.
Lee
,
B. Y.
Lee
, and
S.
Hur
, “
Classifications and applications of inkjet printing technology: A review
,” IEEE Access
9
, 140079
–140102
(2021
).22.
P. P.
Bhat
,
S.
Appathurai
,
M.
Harris
,
M.
Pasquali
,
G. H.
McKinley
, and
O. A.
Basaran
, “
Formation of beads-on-a-string structures during break-up of viscoelastic filaments
,” Nat. Phys.
6
, 625
–631
(2010
).23.
C.
Kant
,
A.
Shukla
,
S. K. M.
McGregor
,
S. C.
Lo
,
E. B.
Namdas
, and
M.
Katiyar
, “
Large area inkjet-printed OLED fabrication with solution-processed TADF ink
,” Nat. Commun.
14
, 7220
(2023
).24.
L. A.
Pradela-Filho
,
J. L. M.
Gongoni
,
I. V. S.
Arantes
,
D. M. D.
Farias
,
T. R. L. C.
Paixão
, and
T.
RLC
, “
Controlling the inkjet printing process for electrochemical (bio) sensors
,” Adv. Mater. Technol.
8
, 2201729
(2023
).25.
Z.
Zhang
,
Z.
Li
,
Y.
Chen
,
Z.
Zhang
,
K.
Fan
,
S.
Chen
,
L.
Liu
, and
S.
Chen
, “
Progress on inkjet printing technique for perovskite films and their optoelectronic and optical applications
,” ACS Photonics
10
, 3435
–3450
(2023
).26.
T.
Matsuda
,
S.
Tamano
,
A.
Bunya
, and
R.
Sugiura
, “
Droplet observation method, droplet observation device, droplet observation program and recording medium
,” Japan Patent JP
2023
–114770
(2023.08.18
).27.
C.
McIlroy
, “
Complex inkjets: Particles, polymers non-linear driving
,” Ph.D. thesis (
University of Leeds
, 2014
).28.
R.
Omidvar
,
S.
Wu
, and
H.
Mohammadigoushki
, “
Detecting wormlike micellar microstructure using extensional rheology
,” J. Rheol.
63
, 33
–44
(2019
).29.
S.
Tamano
and
A.
Bunya
, “
Comparison of rheological properties between DoS and liquid dropping methods in uniaxial extensional flow of dilute polymer aqueous solutions
,” J. Soc. Rheol. Jpn.
50
, 363
–370
(2022
).30.
V. M.
Entov
and
R. J.
Hinch
, “
Effect of a spectrum of relaxation times on the capillary thinning of a filament of elastic liquid
,” J. Non-Newtonian Fluid Mech.
72
, 31
–53
(1997
).31.
G. H.
McKinley
and
A.
Tripathi
, “
How to extract the newtonian viscosity from capillary breakup measurements in a filament rheometer
,” J. Rheol.
44
, 653
–670
(2000
).32.
C.
Wagner
,
L.
Bourouiba
, and
G. H.
McKinley
, “
An analytic solution for capillary thinning and breakup of FENE-P fluids
,” J. Non-Newtonian Fluid Mech.
218
, 53
–61
(2015
).33.
J.
Zhou
and
M.
Doi
, “
Dynamics of viscoelastic filaments based on Onsager principle
,” Phys. Rev. Fluids
3
, 084004
(2018
).34.
M. A.
Fontelos
and
J.
Li
, “
On the evolution and rupture of filaments in Giesekus and FENE models
,” J. Non-Newtonian Fluid Mech.
118
, 1
–16
(2004
).35.
C.
Clasen
,
P. M.
Phillips
,
L.
Palangetic
, and
A. J.
Vermant
, “
Dispensing of rheologically complex fluids: The map of misery
,” AlChE. J.
58
, 3242
–3255
(2012
).36.
Cluster Technology Co., Ltd.
“
Droplet ejecting apparatus
,” WO 2008/050435 A1 (2016(JP)) (2008
).37.
M. A.
Shah
,
D. G.
Lee
,
B. Y.
Lee
,
N. W.
Kim
,
H.
An
, and
S.
Hur
, “
Actuating voltage waveform optimization of piezoelectric inkjet printhead for suppression of residual vibrations
,” Micromachines
11
, 900
(2020
).38.
S.
Kim
,
J. H.
Choi
,
D. K.
Sohn
, and
H. S.
Ko
, “
The effect of ink supply pressure on piezoelectric inkjet
,” Micromachines
13
, 615
(2022
).39.
C.
Clasen
,
J.
Bico
,
V. M.
Entov
, and
G. H.
Mckinley
, “
‘Gobbling drops’: The jetting–dripping transition in flows of polymer solutions
,” J. Fluid Mech.
636
, 5
–40
(2009
).40.
J.
Dinic
,
M.
Biagioli
, and
V.
Sharma
, “
Pinch-off dynamics and extensional relaxation times of intrinsically semi-dilute polymer solutions characterized by dripping-onto-substrate rheometry
,” J. Polym. Sci., Part B
55
, 1692
–1704
(2017
).41.
X.
Yan
,
W. W.
Carr
, and
H.
Dong
, “
Drop-on-demand drop formation of polyethylene oxide solutions
,” Phys. Fluids
23
, 107101
(2011
).42.
V.
Tirtaatmadja
,
G. H.
McKinley
, and
J. J.
Cooper-White
, “
Drop formation and breakup of low viscosity elastic fluids: Effects of molecular weight and concentration
,” Phys. Fluids
18
, 043101
(2006
).43.
M.-J.
Meulen
,
H.
Reinten
,
H.
Wijshoff
,
M.
Versluis
,
D.
Lohse
, and
P.
Steen
, “
Nonaxisymmetric effects in drop-on-demand Piezoacoustic inkjet printing
,” Phys. Rev. Appl.
13
, 054071
(2020
).44.
C.
Clasen
,
J.
Eggers
,
M. A.
Fontelos
,
J.
Li
, and
G. H.
McKinley
, “
The beads-on-string structure of viscoelastic threads
,” J. Fluid Mech.
556
, 283
–308
(2006
).45.
J.
Li
and
M. A.
Fontelos
, “
Drop dynamics on the beads-on-string structure for viscoelastic jets: A numerical study
,” Phys. Fluids
15
, 922
–937
(2003
).46.
Y.
Christanti
and
L. M.
Walker
, “
Surface tension driven jet break up of strain-hardening polymer solutions
,” J. Non-Newtonian Fluid Mech.
100
, 9
–26
(2001
).47.
C.
Xu
,
Z.
Zhang
,
J.
Fu
, and
Y.
Huang
, “
Study of pinch-off locations during drop-on-demand inkjet printing of viscoelastic alginate solutions
,” Langmuir
33
, 5037
–5045
(2017
).48.
A. V.
Bazilevskii
,
J. D.
Meyer
, and
A. N.
Rozhkov
, “
Dynamics and breakup of pulse microjets of polymeric liquids
,” Fluid Dyn.
40
, 376
–392
(2005
).49.
S.
Sur
and
J.
Rothstein
, “
Drop breakup dynamics of dilute polymer solutions: Effect of molecular weight, concentration, and viscosity
,” J. Rheol.
62
, 1245
–1259
(2018
).50.
Y.
Liu
and
B.
Derby
, “
Experimental study of the parameters for stable drop-on-demand inkjet performance
,” Phys. Fluids
31
, 032004
(2019
).51.
C.
McIlroy
,
O. G.
Harlen
, and
N. F.
Morrison
, “
Modelling the jetting of dilute polymer solutions in drop-on-demand inkjet printing
,” J. Non-Newtonian Fluid Mech.
201
, 17
–28
(2013
).52.
N. F.
Morrison
and
O. G.
Harlen
, “
Viscoelasticity in inkjet printing
,” Rheol. Acta
49
, 619
–632
(2010
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.