Brownian and fractional processes are useful computational tools for the modeling of physical phenomena. Here, modeling linear homopolymers in a solution as Brownian or fractional processes, we develop a formalism to take into account both the interactions of the polymer with the solvent as well as the effect of arbitrary polymer-polymer potentials and Gibbs factors. As an example, the average squared length is computed for a non-trivial Gaussian Gibbs factor, which is also compared with the Edwards' and step factor.

1.
R.
Brown
, “
A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies
,”
Philos. Mag.
4
,
161
173
(
1828
).
2.
L.
Bachelier
, “
Théorie de la spéculation
,”
Ann. Sci. École Norm. Sup.
17
,
21
86
(
1900
).
3.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,”
Ann. Phys.
322
,
549
560
(
1905
).
4.
T.
Hida
,
H.-H.
Kuo
,
J.
Potthoff
, and
L.
Streit
,
White Noise: An Infinite Dimensional Calculus
(
Springer Dordrecht
,
2010
).
5.
Y.
LeJan
and
A. S.
Sznitman
, “
Stochastic cascades and 3-dimensional Navier–Stokes equations
,”
Probab. Theory Relat. Fields
109
,
343
366
(
1997
).
6.
E. C.
Waymire
, “
Probability & incompressible Navier-Stokes equations: An overview of some recent developments
,”
Probab. Surv.
2
,
1
32
(
2005
).
7.
E.
Floriani
and
R.
Vilela Mendes
, “
A stochastic approach to the solution of magnetohydrodynamic equations
,”
J. Comput. Phys.
242
,
777
789
(
2013
).
8.
F.
Cipriano
,
H.
Ouerdiane
, and
R. V.
Mendes
, “
Stochastic solution of a KPP-type nonlinear fractional differential equation
,”
Fract. Calc. Appl. Anal.
12
,
47
56
(
2009
).
9.
R. V.
Mendes
, “
Stochastic solutions and singular partial differential equations
,”
Commun. Nonlinear Sci. Numer. Simul.
125
,
107406
(
2023
).
10.
P. J.
Flory
, “
Thermodynamics of high polymer solutions
,”
J. Chem. Phys.
9
,
660
661
(
1941
).
11.
M. L.
Huggins
, “
Solutions of long chain compounds
,”
J. Chem. Phys.
9
,
440
(
1941
).
12.
S. F.
Edwards
, “
The statistical mechanics of polymers with excluded volume
,”
Proc. Phys. Soc.
85
,
613
624
(
1965
).
13.
P.
Flory
,
Selected Works of Paul J. Flory
(
Stanford University Press
,
1985
).
14.
F.
Biagini
,
B.
Øksendal
,
A.
Sulem
, and
N.
Wallner
, “
An introduction to White-Noise theory and Malliavin calculus for fractional Brownian motion
,”
Proc. R. Soc. London A
460
,
347
372
(
2004
).
15.
Y.
Mishura
,
Stochastic Calculus for Fractional Brownian Motion and Related Processes
(
Springer LNM
,
Berlin
,
2008
).
16.
I.
Norros
,
E.
Valkeila
, and
J.
Virtamo
, “
An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion
,”
Bernoulli
5
,
571
587
(
1999
).
17.
Y.
Mishura
and
K.
Ralchenko
,
Discrete-Time Approximations and Limit Theorems
(
De Gruyter
,
Berlin
,
2022
).
18.
M.
Grothaus
,
M. J.
Oliveira
,
J. L.
Silva
, and
L.
Streit
, “
Self-avoiding fractional Brownian motion - The Edwards model
,”
J. Stat. Phys.
145
,
1513
1523
(
2011
).
19.
S. R. S.
Varadhan
, “
Appendix to “Euclidean quantum field theory” by K. Symanzik
,” in
Local Quantum Theory
, edited by
R.
Jost
(
Academic Press
,
New York
,
1970
), p.
285
.
20.
M.
Yor
, “
Renormalisation et convergence en loi pour les temps locaux d'intersection du movement Brownien dans R3
,”
Lectures Notes Math
1123
,
350
365
(
1985
).
21.
J. Y.
Calais
and
M.
Yor
, “
Renormalisation et convergence en loi pour certains intégrales multiples associés au mouvement Brownien dans
Rd,” in
Séminaire de Probabilités XXI.
Lecture Notes in Mathematics (
Springer Berlin Heidelberg
,
1987
), Vol.
1247
, pp.
375
403
.
22.
Y.
Hu
and
D.
Nualart
, “
Renormalized self-intersection local time for fractional Brownian motion
,”
Ann. Probab.
33
,
948
983
(
2005
).
23.
Y.
Hu
and
D.
Nualart
, “
Regularity of renormalized self-intersection local time for fractional Brownian motion
,”
Commun. Inf. Syst.
7
,
21
30
(
2007
).
24.
M. J.
Oliveira
,
J. L.
Silva
, and
L.
Streit
, “
Intersection local times of independent fractional Brownian motions as generalized white noise functionals
,”
Acta Appl. Math.
113
,
17
39
(
2011
).
25.
J.
Bornales
,
M. J.
Oliveira
, and
L.
Streit
, “
Chaos decomposition and gap renormalization of self-intersection local times
,”
Rep. Math. Phys.
77
,
141
152
(
2016
).
26.
W.
Bock
,
J. B.
Bornales
,
C. O.
Cabahug
,
S.
Eleutério
, and
L.
Streit
, “
Scaling properties of weakly self-avoiding fractional brownian motion in one dimension
,”
J. Stat. Phys.
161
,
1155
1162
(
2015
).
27.
B.
Alberts
,
D.
Bray
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
J. D.
Watson
,
Molecular Biology of the Cell
(
Garland
,
New York
,
1994
).
28.
P.-G.
de Gennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,”
J. Chem. Phys
55
,
572
579
(
1971
).
29.
A. E.
Likhtman
, “
Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion
,”
Macromolecules
38
,
6128
6139
(
2005
).
30.
V.
Barbu
,
M.
Rehmeier
, and
M.
Röckner
, “
p Brownian motion p Laplacian
,” arXiv:2409.18744 (
2024
).
31.
V.
Pipiras
and
M. S.
Taqqu
, “
Fractional calculus and its connections to fractional Brownian motion
,” in
Theory and Applications of Long-Range Dependence
, edited by
P.
Doukhan
,
G.
Oppenheim
, and
M. S.
Taqqu
(
Birkhäuser
,
Basel
,
2003
), pp.
165
201
.
32.
R.
Vilela Mendes
, “
A fractional calculus interpretation of the fractional volatility model
,”
Nonlinear Dyn.
55
,
395
399
(
2009
).
33.
S.
Albeverio
,
S.
Kusuoka
,
S.
Liang
, and
M.
Nakashima
, “
Stochastic quantization of the three-dimensional polymer measure via the Dirichlet form method
,” arXiv:2311.05797 (
2023
).
You do not currently have access to this content.