Brownian and fractional processes are useful computational tools for the modeling of physical phenomena. Here, modeling linear homopolymers in a solution as Brownian or fractional processes, we develop a formalism to take into account both the interactions of the polymer with the solvent as well as the effect of arbitrary polymer-polymer potentials and Gibbs factors. As an example, the average squared length is computed for a non-trivial Gaussian Gibbs factor, which is also compared with the Edwards' and step factor.
REFERENCES
1.
R.
Brown
, “
A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies
,” Philos. Mag.
4
, 161
–173
(1828
).2.
L.
Bachelier
, “
Théorie de la spéculation
,” Ann. Sci. École Norm. Sup.
17
, 21
–86
(1900
).3.
A.
Einstein
, “
Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen
,” Ann. Phys.
322
, 549
–560
(1905
).4.
T.
Hida
,
H.-H.
Kuo
,
J.
Potthoff
, and
L.
Streit
, White Noise: An Infinite Dimensional Calculus
(
Springer Dordrecht
, 2010
).5.
Y.
LeJan
and
A. S.
Sznitman
, “
Stochastic cascades and 3-dimensional Navier–Stokes equations
,” Probab. Theory Relat. Fields
109
, 343
–366
(1997
).6.
E. C.
Waymire
, “
Probability & incompressible Navier-Stokes equations: An overview of some recent developments
,” Probab. Surv.
2
, 1
–32
(2005
).7.
E.
Floriani
and
R.
Vilela Mendes
, “
A stochastic approach to the solution of magnetohydrodynamic equations
,” J. Comput. Phys.
242
, 777
–789
(2013
).8.
F.
Cipriano
,
H.
Ouerdiane
, and
R. V.
Mendes
, “
Stochastic solution of a KPP-type nonlinear fractional differential equation
,” Fract. Calc. Appl. Anal.
12
, 47
–56
(2009
).9.
R. V.
Mendes
, “
Stochastic solutions and singular partial differential equations
,” Commun. Nonlinear Sci. Numer. Simul.
125
, 107406
(2023
).10.
P. J.
Flory
, “
Thermodynamics of high polymer solutions
,” J. Chem. Phys.
9
, 660
–661
(1941
).11.
M. L.
Huggins
, “
Solutions of long chain compounds
,” J. Chem. Phys.
9
, 440
(1941
).12.
S. F.
Edwards
, “
The statistical mechanics of polymers with excluded volume
,” Proc. Phys. Soc.
85
, 613
–624
(1965
).13.
14.
F.
Biagini
,
B.
Øksendal
,
A.
Sulem
, and
N.
Wallner
, “
An introduction to White-Noise theory and Malliavin calculus for fractional Brownian motion
,” Proc. R. Soc. London A
460
, 347
–372
(2004
).15.
Y.
Mishura
, Stochastic Calculus for Fractional Brownian Motion and Related Processes
(
Springer LNM
,
Berlin
, 2008
).16.
I.
Norros
,
E.
Valkeila
, and
J.
Virtamo
, “
An elementary approach to a Girsanov formula and other analytical results on fractional Brownian motion
,” Bernoulli
5
, 571
–587
(1999
).17.
Y.
Mishura
and
K.
Ralchenko
, Discrete-Time Approximations and Limit Theorems
(
De Gruyter
,
Berlin
, 2022
).18.
M.
Grothaus
,
M. J.
Oliveira
,
J. L.
Silva
, and
L.
Streit
, “
Self-avoiding fractional Brownian motion - The Edwards model
,” J. Stat. Phys.
145
, 1513
–1523
(2011
).19.
S. R. S.
Varadhan
, “
Appendix to “Euclidean quantum field theory” by K. Symanzik
,” in Local Quantum Theory
, edited by
R.
Jost
(
Academic Press
,
New York
, 1970
), p. 285
.20.
M.
Yor
, “
Renormalisation et convergence en loi pour les temps locaux d'intersection du movement Brownien dans
,” Lectures Notes Math
1123
, 350
–365
(1985
).21.
J. Y.
Calais
and
M.
Yor
, “
Renormalisation et convergence en loi pour certains intégrales multiples associés au mouvement Brownien dans
,” in Séminaire de Probabilités XXI.
Lecture Notes in Mathematics (
Springer Berlin Heidelberg
, 1987
), Vol.
1247
, pp. 375
–403
.22.
Y.
Hu
and
D.
Nualart
, “
Renormalized self-intersection local time for fractional Brownian motion
,” Ann. Probab.
33
, 948
–983
(2005
).23.
Y.
Hu
and
D.
Nualart
, “
Regularity of renormalized self-intersection local time for fractional Brownian motion
,” Commun. Inf. Syst.
7
, 21
–30
(2007
).24.
M. J.
Oliveira
,
J. L.
Silva
, and
L.
Streit
, “
Intersection local times of independent fractional Brownian motions as generalized white noise functionals
,” Acta Appl. Math.
113
, 17
–39
(2011
).25.
J.
Bornales
,
M. J.
Oliveira
, and
L.
Streit
, “
Chaos decomposition and gap renormalization of self-intersection local times
,” Rep. Math. Phys.
77
, 141
–152
(2016
).26.
W.
Bock
,
J. B.
Bornales
,
C. O.
Cabahug
,
S.
Eleutério
, and
L.
Streit
, “
Scaling properties of weakly self-avoiding fractional brownian motion in one dimension
,” J. Stat. Phys.
161
, 1155
–1162
(2015
).27.
B.
Alberts
,
D.
Bray
,
J.
Lewis
,
M.
Raff
,
K.
Roberts
, and
J. D.
Watson
, Molecular Biology of the Cell
(
Garland
,
New York
, 1994
).28.
P.-G.
de Gennes
, “
Reptation of a polymer chain in the presence of fixed obstacles
,” J. Chem. Phys
55
, 572
–579
(1971
).29.
A. E.
Likhtman
, “
Single-chain slip-link model of entangled polymers: Simultaneous description of neutron spin-echo, rheology, and diffusion
,” Macromolecules
38
, 6128
–6139
(2005
).30.
31.
V.
Pipiras
and
M. S.
Taqqu
, “
Fractional calculus and its connections to fractional Brownian motion
,” in Theory and Applications of Long-Range Dependence
, edited by
P.
Doukhan
,
G.
Oppenheim
, and
M. S.
Taqqu
(
Birkhäuser
,
Basel
, 2003
), pp. 165
–201
.32.
R.
Vilela Mendes
, “
A fractional calculus interpretation of the fractional volatility model
,” Nonlinear Dyn.
55
, 395
–399
(2009
).33.
S.
Albeverio
,
S.
Kusuoka
,
S.
Liang
, and
M.
Nakashima
, “
Stochastic quantization of the three-dimensional polymer measure via the Dirichlet form method
,” arXiv:2311.05797 (2023
).© 2024 Author(s). Published under an exclusive license by AIP Publishing.
2024
Author(s)
You do not currently have access to this content.