Measuring and monitoring hemorheological properties provide valuable insights into diseases. To effectively detect impaired blood, it is necessary to quantify the multiple hemorheological properties. However, most of the previous methods only provide single blood property. They require bulky and expensive syringe pumps for precise on–off control. In this study, to resolve several issues, a novel method for measuring multiple hemorheological properties (fluidic resistance, blood viscosity, time constant, compliance coefficient, red blood cell [RBC] aggregation index, and RBC sedimentation index) is proposed by analyzing blood images in microfluidic channels, where transient blood flow is induced by a portable air-compression pump. A microfluidic device consists of an inlet, a test chamber joined to a main channel, and a reservoir. The outlet of test chamber is connected to an air damper, which contributes to stopping blood flow promptly. A fluid circuit model of the proposed microfluidic channels is constructed for estimating flow rate and pressure in the main channel. First, the proposed method is used to obtain the rheological properties of glycerin solution (30%). The normalized difference between the proposed method and the reference value is less than 4%. Subsequently, the proposed method is adopted to detect differences in the medium (1× phosphate-buffered saline, dextran solution: 20 mg/ml) and hematocrit (30%–60%). All hemorheological properties exhibit substantial differences with respect to the hematocrit and medium. The proposed method yields comparable results when compared to the previous methods. In conclusion, the proposed method can measure multiple hemorheological properties by analyzing blood flow in microfluidic channels.

1.
A. L.
Fogelson
and
K. B.
Neeves
, “
Fluid mechanics of blood clot formation
,”
Annu. Rev. Fluid Mech.
47
,
377
403
(
2015
).
2.
S. A.
Wajihah
and
D. S.
Sankar
, “
A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries
,”
Arch. Appl. Mech.
93
,
1771
1796
(
2023
).
3.
A.
Maurya
,
J. S.
Murallidharan
,
A.
Sharma
, and
A.
Agarwal
, “
Microfluidics geometries involved in effective blood plasma separation
,”
Microfluid. Nanofluid.
26
,
73
(
2022
).
4.
G.
Barshtein
,
L.
Livshits
,
A.
Gural
,
D.
Arbell
,
R.
Barkan
,
I.
Pajic-Lijakovic
, and
S.
Yedgar
, “
Hemoglobin binding to the red blood cell (RBC) membrane is associated with decreased cell deformability
,”
Int. J. Mol. Sci.
25
,
5814
(
2024
).
5.
B.-J.
Lai
,
L.-T.
Zhu
,
Z.
Chen
,
B.
Ouyang
, and
Z.-H.
Luo
, “
Review on blood flow dynamics in lab-on-a-chip systems: An engineering perspective
,”
Chem. Bio. Eng.
1
,
26
43
(
2024
).
6.
M.
Faivre
,
C.
Renoux
,
A.
Bessaa
,
L.
Da Costa
,
P.
Joly
,
A.
Gauthier
, and
P.
Connes
, “
Mechanical signature of red blood cells flowing out of a microfluidic constriction is impacted by membrane elasticity, cell surface-to-volume ratio and diseases
,”
Front. Physiol.
11
,
576
(
2020
).
7.
S.
Himbert
and
M. C.
Rheinstädter
, “
Structural and mechanical properties of the red blood cell's cytoplasmic membrane seen through the lens of biophysics
,”
Front. Physiol.
13
,
953257
(
2022
).
8.
Y.
Ge
,
X.
Huang
,
X.
Tang
,
Y.
Wang
,
F.
Chen
,
D.
Xiao
,
P.
Liang
, and
B.
Li
, “
Application and development of optical-based viscosity measurement technology
,”
Opt. Lasers Eng.
181
,
108413
(
2024
).
9.
Y. J.
Kang
, “
Quantification of blood viscoelasticity under microcapillary blood flow
,”
Micromachines (Basel)
14
,
814
(
2023
).
10.
M.
Gironella-Torrent
,
G.
Bergamaschi
,
R.
Sorkin
,
G.
Wuite
, and
F.
Ritort
, “
Viscoelastic phenotyping of red blood cells
,”
Biophys. J.
123
,
770
781
(
2024
).
11.
M. P.
Melepattu
,
G.
Maîtrejean
, and
T.
Podgorski
, “
Dissociation of red blood cell aggregates in extensional flow
,”
Phys. Rev. Fluids
9
,
L071101
(
2024
).
12.
P. S.
Stephanou
, “
A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells
,”
Phys. Fluids
32
,
103103
(
2020
).
13.
C. A.
Lee
and
D. G.
Paeng
, “
Numerical simulation of spatiotemporal red blood cell aggregation under sinusoidal pulsatile flow
,”
Sci. Rep.
11
,
9977
(
2021
).
14.
M.
Bosek
,
B.
Ziomkowska
,
J.
Pyskir
,
T.
Wybranowski
,
M.
Pyskir
,
M.
Cyrankiewicz
,
M.
Napiorkowska
,
M.
Durmowicz
, and
S.
Kruszewski
, “
Relationship between red blood cell aggregation and dextran molecular mass
,”
Sci. Rep.
12
,
19751
(
2022
).
15.
A.
Passos
,
J. M.
Sherwood
,
E.
Kaliviotis
,
R.
Agrawal
,
C.
Pavesio
, and
S.
Balabani
, “
The effect of deformability on the microscale flow behavior of red blood cell suspensions
,”
Phys. Fluids
31
,
091903
(
2019
).
16.
H.
Yang
,
M.
Zhu
,
T.
Chen
,
F.
Niu
,
L.
Sun
, and
L.
Cheng
, “
Automated measurement of cell mechanical properties using an integrated dielectrophoretic microfluidic device
,”
iScience
25
,
104275
(
2022
).
17.
T.
Alexy
,
J.
Detterich
,
P.
Connes
,
K.
Toth
,
E.
Nader
,
P.
Kenyeres
,
J.
Arriola-Montenegro
,
P.
Ulker
, and
M. J.
Simmonds
, “
Physical properties of blood and their relationship to clinical conditions
,”
Front. Physiol.
13
,
906768
(
2022
).
18.
B.
Sebastian
and
P. S.
Dittrich
, “
Microfluidics to mimic blood flow in health and disease
,”
Annu. Rev. Fluid Mech.
50
,
483
504
(
2018
).
19.
E.
Nader
,
C.
Nougier
,
C.
Boisson
,
S.
Poutrel
,
J.
Catella
,
F.
Martin
,
J.
Charvet
,
S.
Girard
,
S.
Havard‐Guibert
,
M.
Martin
,
H.
Rezigue
,
H.
Desmurs‐Clavel
,
C.
Renoux
,
P.
Joly
,
N.
Guillot
,
Y.
Bertrand
,
A.
Hot
,
Y.
Dargaud
, and
P.
Connes
, “
Increased blood viscosity and red blood cell aggregation in patients with COVID‐19
,”
Am. J. Hematol.
97
,
283
292
(
2022
).
20.
Z.
Isiksacan
,
A.
D'Alessandro
,
S. M.
Wolf
,
D. H.
McKenna
,
S. N.
Tessier
,
E.
Kucukal
,
A. A.
Gokaltun
,
N.
William
,
R. D.
Sandlin
,
J.
Bischof
,
N.
Mohandas
,
M. P.
Busch
,
C.
Elbuken
,
U. A.
Gurkan
,
M.
Toner
,
J. P.
Acker
,
M. L.
Yarmush
, and
O. B.
Usta
, “
Assessment of stored red blood cells through lab-on-a-chip technologies for precision transfusion medicine
,”
Proc. Natl. Acad. Sci. U. S. A.
120
,
e2115616120
(
2023
).
21.
O. E.
Jensen
and
I. L.
Chernyavsky
, “
Blood flow and transport in the human placenta
,”
Annu. Rev. Fluid Mech.
51
,
25
47
(
2019
).
22.
U.
Goreke
,
A.
Gonzales
,
B.
Shipley
,
M.
Tincher
,
O.
Sharma
,
W. J.
Wulftange
,
Y.
Man
,
R.
An
,
M.
Hinczewski
, and
U. A.
Gurkan
, “
Motion blur microscopy: In vitro imaging of cell adhesion dynamics in whole blood flow
,”
Nat. Commun.
15
,
7058
(
2024
).
23.
M.
Zhang
,
W.
Zhang
,
Z.
Wang
, and
W.
Chen
, “
Experimental study on the viscoelastic flow mixing in microfluidics
,”
BIO Integr.
1
,
147
155
(
2021
).
24.
A.
Stathoulopoulos
,
A.
Passos
,
E.
Kaliviotis
, and
S.
Balabani
, “
Partitioning of dense RBC suspensions in single microfluidic bifurcations: Role of cell deformability and bifurcation angle
,”
Sci. Rep.
14
,
535
(
2024
).
25.
C.
Minetti
,
V.
Audemar
,
T.
Podgorski
, and
G.
Coupier
, “
Dynamics of a large population of red blood cells under shear flow
,”
J. Fluid Mech.
864
,
408
448
(
2019
).
26.
A.
Mudugamuwa
,
U.
Roshan
,
S.
Hettiarachchi
,
H.
Cha
,
H.
Musharaf
,
X.
Kang
,
Q. T.
Trinh
,
H. M.
Xia
,
N. T.
Nguyen
, and
J.
Zhang
, “
Periodic flows in microfluidics
,”
Small
20
,
e2404685
(
2024
).
27.
S.
Losserand
,
G.
Coupier
, and
T.
Podgorski
, “
Axial dispersion of red blood cells in microchannels
,”
Phys. Rev. Fluids
8
,
043102
(
2023
).
28.
C. A.
Lee
,
H. M. U.
Farooqi
, and
D. G.
Paeng
, “
Axial shear rate: A hemorheological factor for erythrocyte aggregation under Womersley flow in an elastic vessel based on numerical simulation
,”
Comput. Biol. Med.
157
,
106767
(
2023
).
29.
G.
Li
,
Y.
Qiang
,
H.
Li
,
X.
Li
,
P. A.
Buffet
,
M.
Dao
, and
G. E.
Karniadakis
, “
A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease
,”
PLoS Comput. Biol.
19
,
e1011223
(
2023
).
30.
P. Y.
Chu
,
H. Y.
Hsieh
,
P. S.
Chung
,
P. W.
Wang
,
M. C.
Wu
,
Y. Q.
Chen
,
J. C.
Kuo
, and
Y. J.
Fan
, “
Development of vessel mimicking microfluidic device for studying mechano-response of endothelial cells
,”
iScience
26
,
106927
(
2023
).
31.
E.
Bacigalupi
,
J.
Pizzicannella
,
G.
Rigatelli
,
L.
Scorpiglione
,
M.
Foglietta
,
G.
Rende
,
C.
Mantini
,
F. M.
Fiore
,
F.
Pelliccia
, and
M.
Zimarino
, “
Biomechanical factors and atherosclerosis localization: Insights and clinical applications
,”
Front. Cardiovasc. Med.
11
,
1392702
(
2024
).
32.
D.
Pinho
,
V.
Carvalho
,
I. M.
Goncalves
,
S.
Teixeira
, and
R.
Lima
, “
Visualization and measurements of blood cells flowing in microfluidic systems and blood rheology: A personalized medicine perspective
,”
J. Pers. Med.
10
,
249
(
2020
).
33.
J.
Wang
,
C. U.
Choi
, and
S.
Shin
, “
Rapid microfluidic-thromboelastography (μ-TEG) for evaluating whole blood coagulation and fibrinolysis at elevated shear rates
,”
Sens. Actuators, B
390
,
133873
(
2023
).
34.
D.
Kokkinidou
,
E.
Kaliviotis
,
C.
Shammas
,
A.
Anayiotos
, and
K.
Kapnisis
, “
An in vivo investigation on the effects of stent implantation on hematological and hemorheological parameters
,”
Clin. Hemorheol. Microcirc.
87
,
39
53
(
2024
).
35.
G.
Gharib
,
İ.
Bütün
,
Z.
Muganlı
,
G.
Kozalak
,
İ.
Namlı
,
S. S.
Sarraf
,
V. E.
Ahmadi
,
E.
Toyran
,
A. J.
van Wijnen
, and
A.
Koşar
, “
Biomedical applications of microfluidic devices: A review
,”
Biosensors
12
,
1023
(
2022
).
36.
C. M.
Leung
,
P.
de Haan
,
K.
Ronaldson-Bouchard
,
G.-A.
Kim
,
J.
Ko
,
H. S.
Rho
,
Z.
Chen
,
P.
Habibovic
,
N. L.
Jeon
,
S.
Takayama
,
M. L.
Shuler
,
G.
Vunjak-Novakovic
,
O.
Frey
,
E.
Verpoorte
, and
Y.-C.
Toh
, “
A guide to the organ-on-a-chip
,”
Nat. Rev. Methods Primers
2
,
33
(
2022
).
37.
J. M.
Ayuso
,
M.
Virumbrales-Munoz
,
J. M.
Lang
, and
D. J.
Beebe
, “
A role for microfluidic systems in precision medicine
,”
Nat. Commun.
13
,
3086
(
2022
).
38.
P. K.
Yadav
and
M.
Roshan
, “
Effect of peristaltic endoscope and heat transfer on the magnetohydrodynamic flow of non-Newtonian biviscosity fluid through an inclined annulus: Homotopy perturbation approach
,”
Mod. Phys. Lett. B
(in press) (
2024
).
39.
P. K.
Yadav
and
M.
Roshan
, “
Mathematical modeling of electroosmotically driven peristaltic propulsion due to transverse deflections of two periodically deformable curved tubes of unequal wavelengths
,”
Phys. Fluids
36
,
111906
(
2024
).
40.
P. K.
Yadav
and
M.
Roshan
, “
Mathematical modeling of creeping electromagnetohydrodynamic peristaltic propulsion in an annular gap between sinusoidally deforming permeable and impermeable curved tubes
,”
Phys. Fluids
36
,
071907
(
2024
).
41.
P. K.
Yadav
and
M.
Roshan
, “
Mathematical modeling of blood flow in an annulus porous region between two coaxial deformable tubes: An advancement to peristaltic endoscope
,”
Chin. J. Phys.
88
,
89
109
(
2024
).
42.
S.
Nadeem
,
S.
Akhtar
,
A.
Saleem
,
N.
Akkurt
,
S.
Almutairi
,
H. A.
Ghazwani
, and
S. M.
Eldin
, “
Entropy analysis for a novel peristaltic flow in a curved heated endoscope: An application of applied sciences
,”
Sci. Rep.
13
,
1504
(
2023
).
43.
J.
Zhai
,
Y.
Liu
,
W.
Ji
,
X.
Huang
,
P.
Wang
,
Y.
Li
,
H.
Li
,
A. H.
Wong
,
X.
Zhou
,
P.
Chen
,
L.
Wang
,
N.
Yang
,
C.
Chen
,
H.
Chen
,
P. I.
Mak
,
C. X.
Deng
,
R.
Martins
,
M.
Yang
,
T. Y.
Ho
,
S.
Yi
,
H.
Yao
, and
Y.
Jia
, “
Drug screening on digital microfluidics for cancer precision medicine
,”
Nat. Commun.
15
,
4363
(
2024
).
44.
C.-Y.
Lee
,
S.-L.
Lee
,
E.
Kim
,
J.
Kang
,
S.
Jung
,
N.
Kim
,
J.
Jung
,
D. H.
Lee
,
Y.-H.
Roh
, and
D.
Lee
, “
Whole blood viscosity reference intervals and its correlation with hematology and serum chemistry in cats using scanning capillary method
,”
Animals
13
,
3694
(
2023
).
45.
B.
Kim
,
S.
Lee
,
S.
Jee
,
A.
Atajanov
, and
S.
Yang
, “
Micro-viscometer for measuring shear-varying blood viscosity over a wide-ranging shear rate
,”
Sensors
17
,
1442
(
2017
).
46.
W.-J.
Kim
,
S.
Kim
,
C.
Huh
,
B. K.
Kim
, and
Y. J.
Kim
, “
A novel hand-held viscometer applicable for point-of-care
,”
Sens. Actuators, B
234
,
239
246
(
2016
).
47.
S.
Bakhtiaridoost
,
C.
Musuroi
,
M.
Volmer
, and
M.
Florescu
, “
Optoelectronic microfluidic device for point-of-care blood plasma viscosity measurement
,”
Lab Chip
24
,
3305
3314
(
2024
).
48.
A.
Mustafa
,
D.
Haider
,
A.
Barua
,
M.
Tanyeri
,
A.
Erten
, and
O.
Yalcin
, “
Machine learning based microfluidic sensing device for viscosity measurements
,”
Sens. Diagn.
2
,
1509
1520
(
2023
).
49.
Y. J.
Kang
and
S. J.
Lee
, “
In vitro and ex vivo measurement of the biophysical properties of blood using microfluidic platforms and animal models
,”
Analyst
143
,
2723
2749
(
2018
).
50.
W.
Chen
,
M.
Xia
,
W.
Zhu
,
Z.
Xu
,
B.
Cai
, and
H.
Shen
, “
A bio-fabricated tesla valves and ultrasound waves-powered blood plasma viscometer
,”
Front. Bioeng. Biotechnol.
12
,
1394373
(
2024
).
51.
H.
Kim
,
A.
Zhbanov
, and
S.
Yang
, “
Microfluidic systems for blood and blood cell characterization
,”
Biosensors (Basel)
13
,
13
(
2022
).
52.
K. W.
Oh
,
K.
Lee
,
B.
Ahn
, and
E. P.
Furlani
, “
Design of pressure-driven microfluidic networks using electric circuit analogy
,”
Lab Chip
12
,
515
545
(
2012
).
53.
Y. J.
Kang
, “
Microfluidic-based measurement method of red blood cell aggregation under hematocrit variations
,”
Sens. (Basel)
17
,
2037
(
2017
).
54.
C.
Trejo-Soto
and
A.
Hernandez-Machado
, “
Normalization of blood viscosity according to the hematocrit and the shear rate
,”
Micromachines (Basel)
13
,
357
(
2022
).
55.
J.
Illibauer
,
T.
Clodi-Seitz
,
A.
Zoufaly
,
J. H.
Aberle
,
W. J.
Weninger
,
M.
Foedinger
, and
K.
Elsayad
, “
Diagnostic potential of blood plasma longitudinal viscosity measured using Brillouin light scattering
,”
Proc. Natl. Acad. Sci. U. S. A.
121
,
e2323016121
(
2024
).
56.
L.
Chen
,
D.
Li
,
X.
Liu
,
Y.
Xie
,
J.
Shan
,
H.
Huang
,
X.
Yu
,
Y.
Chen
,
W.
Zheng
, and
Z.
Li
, “
Point-of-care blood coagulation assay based on dynamic monitoring of blood viscosity using droplet microfluidics
,”
ACS Sens.
7
,
2170
2177
(
2022
).
57.
P. S.
Lenzen
,
F.
Dingfelder
,
M.
Muller
, and
P.
Arosio
, “
Portable microfluidic viscometer for formulation development and in situ quality control of protein and antibody solutions
,”
Anal. Chem.
96
,
13185
13190
(
2024
).
58.
I. C.
Esfahani
,
N. A.
Tehrani
,
S.
Ji
, and
H.
Sun
, “
Simultaneous protein adsorption and viscosity measurement using micropillar-enhanced acoustic wave (μPAW) device for pharmaceutical applications
,”
J. Pharm. Sci.
113
,
2715
2722
(
2024
).
59.
R.
Jiang
,
P.
Yoo
,
A. M.
Sudarshana
,
E.
Pelegri-O'Day
,
S.
Chhabra
,
M.
Mock
, and
A. P.
Lee
, “
Microfluidic viscometer by acoustic streaming transducers
,”
Lab Chip
23
,
2577
2585
(
2023
).
60.
S.
Tiwari
,
A.
Dangi
, and
R.
Pratap
, “
A tip-coupled, two-cantilever, non-resonant microsystem for direct measurement of liquid viscosity
,”
Microsyst. Nanoeng.
9
,
34
(
2023
).
61.
M. I.
Pryazhnikov
,
A. S.
Yakimov
,
I. A.
Denisov
,
A. I.
Pryazhnikov
,
A. V.
Minakov
, and
P. I.
Belobrov
, “
Fluid viscosity measurement by means of secondary flow in a curved channel
,”
Micromachines (Basel)
13
,
1452
(
2022
).
62.
Y. J.
Kang
, “
Microfluidic viscometer using capillary pressure sensing
,”
Phys. Fluids
35
,
121907
(
2023
).
63.
T.
John
,
L.
Kaestner
,
C.
Wagner
,
A.
Darras
, and
C.
Amon
, “
Early stage of erythrocyte sedimentation rate test: Fracture of a high-volume-fraction gel
,”
PNAS Nexus
3
,
1
8
(
2023
).
64.
Z.
Isiksacan
,
M.
Asghari
, and
C.
Elbuken
, “
A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics
,”
Microfluid. Nanofluid.
21
,
44
(
2017
).
65.
Z.
Isiksacan
,
M.
Serhatlioglu
, and
C.
Elbuken
, “
In vitro analysis of multiple blood flow determinants using red blood cell dynamics under oscillatory flow
,”
Analyst
145
,
5996
6005
(
2020
).
66.
B.
Namgung
,
T.
Lee
,
J. K. S.
Tan
,
D. K. H.
Poh
,
S.
Park
,
K. Z.
Chng
,
R.
Agrawal
,
S. Y.
Park
,
H. L.
Leo
, and
S.
Kim
, “
Vibration motor-integrated low-cost, miniaturized system for rapid quantification of red blood cell aggregation
,”
Lab Chip
20
,
3930
3937
(
2020
).
67.
Y. J.
Kang
, “
Biomechanical assessment of red blood cells in pulsatile blood flows
,”
Micromachines (Basel)
14
,
317
(
2023
).
68.
R.
Mehri
,
E.
Niazi
,
C.
Mavriplis
, and
M.
Fenech
, “
An automated method for dynamic red blood cell aggregate detection in microfluidic flow
,”
Physiol. Meas.
39
,
01NT02
(
2018
).
69.
A. C.
Sabuncu
,
S.
Muldur
,
B.
Cetin
,
O. B.
Usta
, and
N.
Aubry
, “
beta-Dispersion of blood during sedimentation
,”
Sci. Rep.
11
,
2642
(
2021
).
70.
J.
Wen
,
N.
Wan
,
H.
Bao
, and
J.
Li
, “
Quantitative measurement and evaluation of red blood cell aggregation in normal blood based on a modified Hanai equation
,”
Sens. (Basel)
19
,
1095
(
2019
).
71.
M.
Higuchi
and
N.
Watanabe
, “
Determination of the erythrocyte sedimentation rate using the hematocrit-corrected aggregation index and mean corpuscular volume
,”
Clinical Lab. Anal.
37
,
e24877
(
2023
).
72.
L. H.
Deng
,
J. C.
Barbenel
, and
G. D. O.
Lowe
, “
Influence of hematocrit on erythrocyte aggregation kinetics for suspensions of red blood cells in autologous plasma
,”
Biorheology
31
,
193
205
(
1994
).
73.
P.
Connes
,
R.
Mehri
,
C.
Mavriplis
, and
M.
Fenech
, “
Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system
,”
PLoS One
13
,
e0199911
(
2018
).
74.
B. J.
Kim
,
Y. S.
Lee
,
A.
Zhbanov
, and
S.
Yang
, “
A physiometer for simultaneous measurement of whole blood viscosity and its determinants: Hematocrit and red blood cell deformability
,”
Analyst
144
,
3144
3157
(
2019
).
75.
Y. J.
Kang
, “
Facile compliance-based pump for blood physiometer
,”
Phys. Fluids
36
,
052003
(
2024
).
76.
Y. J.
Kang
, “
Blood viscometer using capillary blood flow under disposable compliance pump
,”
Int. J. Mech. Sci.
277
,
109456
(
2024
).
77.
T. M.
Fischer
, “
The shape of human red blood cells suspended in autologous plasma and serum
,”
Cells
11
,
1941
(
2022
).
78.
L. E. G.
Eriksson
, “
On the shape of human red blood cells interacting with flat artificial surfaces—The ‘glass effect’
,”
Biochim. Biophys. Acta
1036
,
193
201
(
1990
).
79.
Y. J.
Kang
, “
Red blood cell sedimentation index using shear stress of blood flow in microfluidic channel
,”
Biosensors
12
,
547
(
2022
).
80.
W.
Thielicke
and
E. J.
Stamhuis
, “
PIVlab—Towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB
,”
J. Open Res. Software
2
,
30
(
2014
).
81.
J. H.
Barbee
and
G. R.
Cokelet
, “
The Fahraeus effect
,”
Microvasc. Res.
3
,
6
16
(
1971
).
82.
G.
Kim
,
S.
Jeong
, and
Y. J.
Kang
, “
Ultrasound standing wave-based cell-to-liquid separation for measuring viscosity and aggregation of blood sample
,”
Sensors (Basel)
20
,
2284
(
2020
).
83.
Y. J.
Kang
, “
Microfluidic-based biosensor for blood viscosity and erythrocyte sedimentation rate using disposable fluid delivery system
,”
Micromachines (Basel)
11
,
215
(
2020
).
84.
C.
Chartrand
,
A. V.
Le
, and
M.
Fenech
, “
Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization
,”
MethodsX
10
,
102110
(
2023
).
85.
A. V.
Le
and
M.
Fenech
, “
Image-based experimental measurement techniques to characterize velocity fields in blood microflows
,”
Front. Physiol.
13
,
886675
(
2022
).
86.
K. L.
Pitts
,
R.
Mehri
,
C.
Mavriplis
, and
M.
Fenech
, “
Micro-particle image velocimetry measurement of blood flow: Validation and analysis of data pre-processing and processing methods
,”
Meas. Sci. Technol.
23
,
105302
(
2012
).
87.
Y. J.
Kang
, “
A disposable blood-on-a-chip for simultaneous measurement of multiple biophysical properties
,”
Micromachines
9
,
475
(
2018
).
88.
S.
Sodergren
,
K.
Svensson
, and
K.
Hjort
, “
Microfluidic active pressure and flow stabiliser
,”
Sci. Rep.
11
,
22504
(
2021
).
89.
A.
Kalantarifard
,
E.
Alizadeh Haghighi
, and
C.
Elbuken
, “
Damping hydrodynamic fluctuations in microfluidic systems
,”
Chem. Eng. Sci.
178
,
238
247
(
2018
).
90.
A. K.
Dasanna
,
A.
Darras
,
T.
John
,
G.
Gompper
,
L.
Kaestner
,
C.
Wagner
, and
D. A.
Fedosov
, “
Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse
,”
Phys. Rev. E
105
,
024610
(
2022
).
91.
Y. J.
Kang
, “
Microfluidic-based measurement of RBC aggregation and the ESR using a driving syringe system
,”
Anal. Methods
10
,
1805
1816
(
2018
).
92.
Y. J.
Kang
and
S.
Yang
, “
Integrated microfluidic viscometer equipped with fluid temperature controller for measurement of viscosity in complex fluids
,”
Microfluid. Nanofluid.
14
,
657
668
(
2013
).
93.
Y. J.
Kang
,
E.
Yeom
,
E.
Seo
, and
S. J.
Lee
, “
Bubble-free and pulse-free fluid delivery into microfluidic devices
,”
Biomicrofluidics
8
,
014102
(
2014
).
94.
E.
Yeom
,
J. H.
Park
,
Y. J.
Kang
, and
S. J.
Lee
, “
Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity
,”
Sci. Rep.
6
,
24994
(
2016
).
95.
Y. J.
Kang
,
S.
Serhrouchni
,
A.
Makhro
,
A.
Bogdanova
, and
S. S.
Lee
, “
Simple assessment of red blood cell deformability using blood pressure in capillary channels for effective detection of subpopulations in red blood cells
,”
ACS Omega
7
,
38576
38588
(
2022
).
96.
Y. J.
Kang
,
Y. R.
Ha
, and
S. J.
Lee
, “
High-throughput and label-free blood-on-a-chip for malaria diagnosis
,”
Anal. Chem.
88
,
2912
2922
(
2016
).
You do not currently have access to this content.