In order to overcome the operational challenges faced by traditional underwater robots at the water surface and improve their surface maneuverability, this study adopts the dolphin as a biological model to investigate its hydrodynamic performance during the transition from standing-and-walking (SAW) to standing-and-turning (SAT) behaviors on the water surface. The research leverages the compound motion of the body, caudal fin, and pectoral fins in a three-dimensional dolphin physical model to realize three novel SAT modes based on the SAW, respectively: different amplitude (DA), different frequency (DF), and different phase (DP). Through a series of numerical simulations, the time-varying patterns of key parameters during the transition process were described, and the mapping relationships between kinematic parameters and hydrodynamic performance for each mode were quantitatively analyzed, revealing the transient evolution of the flow field around the dolphin model. The results showed that the proposed SAT modes could simultaneously generate vertical and horizontal thrusts, along with torque around the body's longitudinal axis, enabling the transition from SAW to SAT behavior. Among the three turning modes, the DF mode exhibited the most stable maneuverability. Notably, under specific conditions, the turning radius of the DP mode can reach 0.014 m, effectively achieving in-place SAT behavior, which is challenging for traditional underwater robots. This work provides a novel approach to addressing the surface operation challenges faced by traditional underwater robots, significantly enhancing their maneuverability on the water surface.

1.
O.
Ellabban
,
H.
Abu-Rub
, and
F.
Blaabjerg
, “
Renewable energy resources: Current status, future prospects and their enabling technology
,”
Renewable Sustainable Energy Rev.
39
,
748
764
(
2014
).
2.
J. F.
Imhoff
,
A.
Labes
, and
J.
Wiese
, “
Bio-mining the microbial treasures of the ocean: New natural products
,”
Biotechnol. Adv.
29
(
5
),
468
482
(
2011
).
3.
P. I.
Macreadie
,
D. L.
McLean
,
P. G.
Thomson
,
J. C.
Partridge
,
D. O. B.
Jones
,
A. R.
Gates
,
M. C.
Benfield
,
S. P.
Collin
,
D. J.
Booth
,
L. L.
Smith
,
E.
Techera
,
D.
Skropeta
,
T.
Horton
,
C.
Pattiaratchi
,
T.
Bond
, and
A. M.
Fowler
, “
Eyes in the sea: Unlocking the mysteries of the ocean using industrial, remotely operated vehicles (ROVs)
,”
Sci. Total Environ.
634
,
1077
1091
(
2018
).
4.
L.
Paull
,
S.
Saeedi
,
M.
Seto
, and
H.
Li
, “
AUV navigation and localization: A review
,”
IEEE J. Oceanic Eng.
39
(
1
),
131
149
(
2014
).
5.
A.
Sahoo
,
S. K.
Dwivedy
, and
P. S.
Robi
, “
Advancements in the field of autonomous underwater vehicle
,”
Ocean Eng.
181
,
145
160
(
2019
).
6.
R. B.
Wynn
,
V. A. I.
Huvenne
,
T. P.
Le Bas
,
B. J.
Murton
,
D. P.
Connelly
,
B. J.
Bett
,
H. A.
Ruhl
,
K. J.
Morris
,
J.
Peakall
,
D. R.
Parsons
,
E. J.
Sumner
,
S. E.
Darby
,
R. M.
Dorrell
, and
J. E.
Hunt
, “
Autonomous Underwater Vehicles (AUVs): Their past, present and future contributions to the advancement of marine geoscience
,”
Mar. Geol.
352
,
451
468
(
2014
).
7.
F.
Berlinger
,
M.
Gauci
, and
R.
Nagpal
, “
Implicit coordination for 3D underwater collective behaviors in a fish-inspired robot swarm
,”
Sci. Rob.
6
(
50
),
eabd8668
(
2021
).
8.
Y.
Hao
,
Y.
Cao
,
Y.
Cao
,
X.
Mo
,
Q.
Huang
,
L.
Gong
,
G.
Pan
, and
Y.
Cao
, “
Bioinspired closed-loop CPG-based Control of a robotic manta for autonomous swimming
,”
J. Bionic Eng.
21
,
177
191
(
2023
).
9.
J.
Wang
,
Z.
Wu
,
Y.
Zhang
,
S.
Kong
,
M.
Tan
, and
J.
Yu
, “
Integrated tracking control of an underwater bionic robot based on multimodal motions
,”
IEEE Trans. Syst. Man, Cybern. Syst.
54
(
3
),
1599
1610
(
2024
).
10.
J.
Yu
,
Z.
Su
,
Z.
Wu
, and
M.
Tan
, “
Development of a fast-swimming dolphin robot capable of leaping
,”
IEEE/ASME Trans. Mechatron.
21
(
5
),
2307
2316
(
2016
).
11.
D.
Au
and
D.
Weihs
, “
At high speeds dolphins save energy by leaping
,”
Nature
284
(
5756
),
548
550
(
1980
).
12.
F. E.
Fish
and
C. A.
Hui
, “
Dolphin swimming—A review
,”
Mammal Rev.
21
(
4
),
181
195
(
1991
).
13.
C. K.
Aidun
and
J. R.
Clausen
, “
Lattice-Boltzmann method for complex flows
,”
Annu. Rev. Fluid Mech.
42
(
1
),
439
472
(
2010
).
14.
R. G.
Bottom
,
I.
Borazjani
,
E. L.
Blevins
, and
G. V.
Lauder
, “
Hydrodynamics of swimming in stingrays: Numerical simulations and the role of the leading-edge vortex
,”
J. Fluid Mech.
788
,
407
443
(
2016
).
15.
T. Y.
Wu
, “
Fish swimming and bird/insect flight
,”
Annu. Rev. Fluid Mech.
43
(
1
),
25
58
(
2011
).
16.
M. E.
Cates
and
J.
Tailleur
, “
Motility-induced phase separation
,”
Annu. Rev. Condens. Matter Phys.
6
,
219
244
(
2015
).
17.
J.
Elgeti
,
R. G.
Winkler
, and
G.
Gompper
, “
Physics of microswimmers—single particle motion and collective behavior: A review
,”
Rep. Prog. Phys.
78
(
5
),
056601
(
2015
).
18.
A.
Zöettl
and
H.
Stark
, “
Emergent behavior in active colloids
,”
J. Phys.
28
(
25
),
253001
(
2016
).
19.
I.
Borazjani
and
M.
Daghooghi
, “
The fish tail motion forms an attached leading edge vortex
,”
Proc. R. Soc. B
280
(
1756
),
20122071
(
2013
).
20.
I.
Borazjani
and
F.
Sotiropoulos
, “
On the role of form and kinematics on the hydrodynamics of self-propelled body/caudal fin swimming
,”
J. Exp. Biol.
213
(
1
),
89
107
(
2010
).
21.
K. L.
Feilich
and
G. V.
Lauder
, “
Passive mechanical models of fish caudal fins: Effects of shape and stiffness on self-propulsion
,”
Bioinspiration Biomimetics
10
(
3
),
036002
(
2015
).
22.
G. V.
Lauder
,
E. J.
Anderson
,
J.
Tangorra
, and
P. G. A.
Madden
, “
Fish biorobotics: Kinematics and hydrodynamics of self-propulsion
,”
J. Exp. Biol.
210
(
16
),
2767
2780
(
2007
).
23.
Z.
Li
,
Q.
Gai
,
H.
Yan
,
M.
Lei
,
Z.
Zhou
, and
D.
Xia
, “
The effect of the four-tentacled collaboration on the self-propelled performance of squid robot
,”
Phys. Fluids
36
(
4
),
041909
(
2024
).
24.
D. B.
Quinn
,
G. V.
Lauder
, and
A. J.
Smits
, “
Scaling the propulsive performance of heaving flexible panels
,”
J. Fluid Mech.
738
,
250
267
(
2014
).
25.
I.
Borazjani
, “
Simulations of unsteady aquatic locomotion: From unsteadiness in straight-line swimming to fast-starts
,”
Integr. Comp. Biol.
55
(
4
),
740
752
(
2015
).
26.
M.
Gazzola
,
W. M.
Van Rees
, and
P.
Koumoutsakos
, “
C-start: Optimal start of larval fish
,”
J. Fluid Mech.
698
,
5
18
(
2012
).
27.
Z.
Li
,
Q.
Gai
,
M.
Lei
,
H.
Yan
, and
D.
Xia
, “
Development of a multi-tentacled collaborative underwater robot with adjustable roll angle for each tentacle
,”
Ocean Eng.
308
,
118376
(
2024
).
28.
Z.
Li
,
D.
Xia
,
X.
Zhou
,
J.
Cao
,
W.
Chen
, and
X.
Wang
, “
The hydrodynamics of self-rolling locomotion driven by the flexible pectoral fins of 3-D bionic dolphin
,”
J. Ocean Eng. Sci.
7
(
1
),
29
40
(
2022
).
29.
M.
Lei
,
Q.
Gai
,
H.
Yan
,
Y.
Li
,
J.
Wu
, and
D.
Xia
, “
Hydrodynamics of standing-and-walking on the water surface by dolphins using collaborative movements of the body and fins
,”
Phys. Fluids
36
(
7
),
071913
(
2024
).
30.
M.
Lei
,
Z.
Li
,
H.
Yan
,
J.
Cao
, and
D.
Xia
, “
A comparative study of three modes for realizing transmedia standing-and-hovering behavior in robotic dolphins
,”
Phys. Fluids
36
(
2
),
021902
(
2024
).
31.
D.
Xia
,
M.
Lei
,
W.
Chen
, and
Y.
Shi
, “
Hydrodynamics study of standing-and-hovering behavior of dolphins on the water surface
,”
Ocean Eng.
264
,
112604
(
2022
).
32.
M.
Gazzola
,
A. A.
Tchieu
,
D.
Alexeev
,
A.
de Brauer
, and
P.
Koumoutsakos
, “
Learning to school in the presence of hydro dynamic interactions
,”
J. Fluid Mech.
789
,
726
749
(
2016
).
33.
A.
Huth
and
C.
Wissel
, “
The simulation of the movement of fish schools
,”
J. Theor. Biol.
156
(
3
),
365
385
(
1992
).
34.
A. P.
Maertens
,
A.
Gao
, and
M. S.
Triantafyllou
, “
Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers
,”
J. Fluid Mech.
813
,
301
345
(
2017
).
35.
S.
Verma
,
G.
Novati
, and
P.
Koumoutsakos
, “
Efficient collective swimming by harnessing vortices through deep reinforcement learning
,”
Proc. Natl. Acad. Sci. U. S. A.
115
(
23
),
5849
5854
(
2018
).
36.
M. J.
Lighthill
, “
Note on the swimming of slender fish
,”
J. Fluid Mech.
9
(
2
),
305
317
(
1960
).
37.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
You do not currently have access to this content.