Tsunamis present a significant risk to coastal infrastructure. This study conducts a comprehensive experimental investigation into the effects of tsunami impacts on a vertical structure equipped with an overhanging horizontal slab. Dam-break waves were generated in the laboratory to simulate tsunami bore. The uplift pressure of the tsunami bore on the horizontal suspended slab and the horizontal pressure on the vertical wall were analyzed by combining experimental data with water flow patterns. The results revealed that the impact process could be categorized into four stages: initial impact, run-up, quasi-steady, and recession. Two characteristic pressures were identified: a maximum pressure during the initial impact stage and a quasi-steady pressure with a longer duration. The maximum uplift pressure was found to increase with the relative position and tsunami bore height. However, this trend was influenced by the slab height and gravity, particularly on the side of the slab closest to the wall. As the slab height increased, the water flow reflection area expanded, diminishing the focusing effect caused by the slab and decreasing the quasi-steady uplift pressure. The uplift coefficient was observed to decrease with an increase in the relative slab height, and a new uplift coefficient envelope was proposed based on experimental data and published articles. Equations for the uplift pressure distribution and a novel conversion method between uplift pressure and horizontal pressure were introduced. Furthermore, based on the measured data and existing theories, equations for estimating the maximum and quasi-steady uplift pressures are presented and validated using published data. These findings provide valuable insights into understanding and estimating the impact of tsunami on structures.

1.
Adityawan
,
M. B.
,
Dao
,
N. X.
,
Tanaka
,
H.
,
Mano
,
A.
, and
Udo
,
K.
, “
Morphological changes along the Ishinomaki coast induced by the 2011 Great East Japan tsunami and the relationship with coastal structures
,”
Coastal Eng. Jpn.
56
,
1450016
(
2014
).
2.
Alam
,
M. S.
,
Winter
,
A. O.
,
Galant
,
G.
,
Shekhar
,
K.
,
Barbosa
,
A. R.
,
Motley
,
M. R.
,
Eberhard
,
M. O.
,
Cox
,
D. T.
,
Arduino
,
P.
, and
Lomonaco
,
P.
, “
Tsunami-like wave-induced lateral and uplift pressures and forces on an elevated coastal structure
,”
J. Waterw., Port, Coastal, Ocean Eng.
146
,
04020008
(
2020
).
3.
Alderson
,
J.
,
Allsop
,
W.
,
Cuomo
,
G.
,
Duchene
,
Y.
, and
Goyet
,
V. de V. de
, “
Forensic study of wave loads on a pier in Belgium
,”
Proc. Inst. Civ. Eng.
162
,
25
32
(
2009
).
4.
Aniel-Quiroga
,
I.
,
Vidal
,
C.
,
Lara
,
J. L.
,
Gonzalez
,
M.
, and
Sainz
,
A.
, “
Stability of rubble-mound breakwaters under tsunami first impact and overflow based on laboratory experiments
,”
Coastal Eng.
135
,
39
54
(
2018
).
5.
Aniel-Quiroga
,
I.
,
Vidal
,
C.
,
Lara
,
J. L.
, and
Gonzalez
,
M.
, “
Pressures on a rubble-mound breakwater crown-wall for tsunami impact
,”
Coastal Eng.
152
,
103522
(
2019
).
6.
Arabi
,
M. G.
,
Sogut
,
D. V.
,
Khosronejad
,
A.
,
Yalciner
,
A. C.
, and
Farhadzadeh
,
A.
, “
A numerical and experimental study of local hydrodynamics due to interactions between a solitary wave and an impervious structure
,”
Coastal Eng.
147
,
43
62
(
2019
).
7.
Asakura
,
R.
,
Iwase
,
K.
,
Ikeya
,
T.
,
Takao
,
M.
,
Kaneto
,
T.
,
Fujii
,
N.
, and
Ohmori
,
M.
, “
The Tsunami Wave Force Acting on Land Structures
,” in
Coastal Engineering 2002. Presented at the Proceedings of the 28th International Conference
(
World Scientific Publishing Company
,
Cardiff, Wales
,
2003
), pp.
1191
1202
.
8.
Bossau
,
J. C.
and
Bekker
,
A.
, “
Line detection techniques to pinpoint slamming impulses in time-frequency images of hull acceleration measurements
,”
Ocean Eng.
249
,
110841
(
2022
).
9.
Bredmose
,
H.
,
Bullock
,
G.
, and
Hogg
,
A.
, “
Violent breaking wave impacts. Part 3. Effects of scale and aeration
,”
J. Fluid Mech.
765
,
82
113
(
2015
).
10.
Bullock
,
G. N.
,
Crawford
,
A. R.
,
Hewson
,
P. J.
,
Walkden
,
M. J. A.
, and
Bird
,
P. A. D.
, “
The influence of air and scale on wave impact pressures
,”
Coastal Eng.
42
,
291
312
(
2001
).
11.
Chanson
,
H.
, “
Tsunami surges on dry coastal plains: Application of dam break wave equations
,”
Coastal Eng. J.
48
,
355
370
(
2006
).
12.
Chen
,
C.
,
Melville
,
B. W.
,
Nandasena
,
N. A. K.
,
Shamseldin
,
A. Y.
, and
Wotherspoon
,
L.
, “
Experimental study of uplift loads due to tsunami bore impact on a wharf model
,”
Coastal Eng.
117
,
126
137
(
2016
).
13.
Chen
,
C.
,
Melville
,
B. W.
, and
Nandasena
,
N. A. K.
, “
Investigations of reduction effect of vertical wall on dam-break-simulated tsunami surge exerted on wharf piles
,”
J. Earthquake Tsunami
12
,
1840006
(
2018
).
14.
Chen
,
C.
,
Peng
,
C.
,
Nandasena
,
N. A. K.
,
Yan
,
H.
, and
Zhan
,
Z.
, “
Protective effect of ecological embankment on a building subjected to tsunami bores
,”
Ocean Eng.
280
,
114638
(
2023a
).
15.
Chen
,
C.
,
Li
,
Z.
, and
Nandasena
,
N. A. K.
, “
Experimental study of the interaction between tsunami bores and 3D jetty models
,”
Ocean Eng.
286
,
115593
(
2023b
).
16.
Chen
,
C.
,
Chen
,
H.
, and
Deng
,
X.
, “
Temporal and spatial distributions of impact pressure on slope-deck structure under dam-break waves
,”
J. Hydroelectr. Eng.
42
,
17
(
2023c
) (in Chinese); available at https://webofscience.clarivate.cn/wos/alldb/full-record/CSCD:7480916.
17.
Chen
,
X.
,
Hofland
,
B.
,
Molenaar
,
W.
,
Capel
,
A.
, and
van Gent
,
M. V.
, “
Use of impulses to determine the reaction force of a hydraulic structure with an overhang due to wave impact
,”
Coastal Eng.
147
,
75
(
2019
).
18.
Chi
,
P.
,
Shilong
,
Z.
,
Jianhong
,
F.
,
Qinfeng
,
L.
,
Yu
,
S.
,
Hao
,
C.
,
Yuxuan
,
C.
, and
Yun
,
Y.
, “
Erosion experiments of shale using a cavitation jet
,”
Ocean Eng.
261
,
112115
(
2022
).
19.
Chock
,
G. Y. K.
,
Robertson
,
I.
, and
Riggs
,
H. R.
, “
Tsunami structural design provisions for a new update of building codes and performance-based engineering
,” in
Solutions to Coastal Disasters 2011. Paper Presented at the Solutions to Coastal Disasters Conference 2011
(
American Society of Civil Engineers
,
2011
), pp.
423
435
.
20.
Cuomo
,
G.
,
Tirindelli
,
M.
, and
Allsop
,
W.
, “
Wave-in-deck loads on exposed jetties
,”
Coastal Eng.
54
,
657
679
(
2007
).
21.
Cuomo
,
G.
,
Shimosako
,
K.
, and
Takahashi
,
S.
, “
Wave-in-deck loads on coastal bridges and the role of air
,”
Coastal Eng.
56
,
793
809
(
2009
).
22.
Cuomo
,
G.
,
Allsop
,
W.
, and
Takahashi
,
S.
, “
Scaling wave impact pressures on vertical walls
,”
Coastal Eng.
57
,
604
609
(
2010
).
23.
Doi
,
C.
and
Taniguchi
,
M.
, “
Great East Japan Earthquake damage and local government relief
,” in
the Ravage of the Planet 2015, Opatija, Croatia
(
WIT Press
,
2015
), pp.
209
219
.
24.
Duong
,
T. T.
,
Jung
,
K. H.
,
Lee
,
G. N.
,
Park
,
H. J.
,
Lee
,
J.
, and
Suh
,
S. B.
, “
Experimental study on wave-in-deck loading under focused wave conditions
,”
Ocean Eng.
242
,
110146
(
2021
).
25.
Esteban
,
M.
,
Jayaratne
,
R.
,
Mikami
,
T.
,
Morikubo
,
I.
,
Shibayama
,
T.
,
Thao
,
N. D.
,
Ohira
,
K.
,
Ohtani
,
A.
,
Mizuno
,
Y.
,
Kinoshita
,
M.
, and
Matsuba
,
S.
, “
Stability of breakwater armor units against tsunami attacks
,”
J. Waterw., Port, Coastal, Ocean Eng.
140
,
188
198
(
2014
).
26.
Farvizi
,
F.
,
Melville
,
B. W.
,
Shamseldin
,
A. Y.
, and
Shafiei
,
S.
, “
Experimental investigation of tsunami bore-induced forces on skewed deck girder section bridges
,”
J. Hydraul. Eng.
147
,
04021027
(
2021
).
27.
Farvizi
,
F.
,
Melville
,
B. W.
,
Shamseldin
,
A. Y.
, and
Shafiei
,
S.
, “
Experimental investigation of the effects of contraction on tsunami-induced forces and pressures on a box section bridge
,”
J. Hydro-environ. Res.
40
,
116
(
2022
).
28.
Gaeta
,
M. G.
,
Martinelli
,
L.
, and
Lamberti
,
A.
, “
Uplift forces on wave exposed jetties: Scale comparison and effect of venting
,”
Int. Conf. Coastal Eng.
1
,
34
(
2012
).
29.
Goseberg
,
N.
,
Stolle
,
J.
,
Nistor
,
I.
, and
Shibayama
,
T.
, “
Experimental analysis of debris motion due the obstruction from fixed obstacles in tsunami-like flow conditions
,”
Coastal Eng.
118
,
35
49
(
2016
).
30.
Guler
,
H. G.
,
Arikawa
,
T.
,
Oei
,
T.
, and
Yalciner
,
A. C.
, “
Performance of rubble mound breakwaters under tsunami attack, a case study: Haydarpasa Port, Istanbul, Turkey
,”
Coastal Eng.
104
,
43
53
(
2015
).
31.
Harish
,
S.
,
Sriram
,
V.
,
Schuettrumpf
,
H.
, and
Sannasiraj
,
S. A.
, “
Tsunami-like flow induced force on the structure: Prediction formulae for the horizontal force in quasi-steady flow phase
,”
Coastal Eng.
168
,
103938
(
2021
).
32.
Harish
,
S.
,
Sriram
,
V.
,
Schuettrumpf
,
H.
, and
Sannasiraj
,
S. A.
, “
Tsunami-like flow induced forces on the structure: Dependence of the hydrodynamic force coefficients on Froude number and flow channel width in quasi-steady flow phase
,”
Coastal Eng.
172
,
104078
(
2022a
).
33.
Harish
,
S.
,
Sriram
,
V.
,
Schuettrumpf
,
H.
, and
Sannasiraj
,
S. A.
, “
Flow-structure interference effects with the surrounding structure in the choked quasi-steady condition of tsunami: Comparison with traditional obstruction approach
,”
Appl. Ocean Res.
126
,
103255
(
2022b
).
34.
Hartana
and
Murakami
,
K.
, “
Numerical and experimental simulation of two-phase tsunami flow through buildings with openings
,”
J. Earthquake Tsunami
09
,
1550007
(
2015
).
35.
Hattori
,
M.
,
Arami
,
A.
, and
Yui
,
T.
, “
Wave impact pressure on vertical walls under breaking waves of various types
,”
Coastal Eng.
22
,
79
114
(
1994
).
36.
Heller
,
V.
, “
Scale effects in physical hydraulic engineering models
,”
J. Hydraul. Res.
49
,
293
306
(
2011
).
37.
Hong
,
J.
,
Wei
,
K.
,
Shen
,
Z.
,
Xu
,
B.
, and
Qin
,
S.
, “
Experimental study of breaking wave loads on elevated pile cap with rectangular cross-section
,”
Ocean Eng.
227
,
108878
(
2021
).
38.
Huang
,
J.
and
Chen
,
G.
, “
Experimental modeling of wave load on a pile-supported wharf with pile breakwater
,”
Ocean Eng.
201
,
107149
(
2020a
).
39.
Huang
,
J.
and
Chen
,
G.
, “
Experimental study on wave impulse and characteristic pressure of a vertical wall with overhanging horizontal cantilever slab
,”
Ocean Eng.
217
,
108055
(
2020b
).
40.
Huang
,
J.
and
Chen
,
G.
, “
Experimental study of wave impact on a vertical wall with overhanging horizontal cantilever slab and structural response analysis
,”
Ocean Eng.
247
,
110765
(
2022a
).
41.
Huang
,
J.
and
Chen
,
G.
, “
Identification and classification of the wave impacts on the vertical wall with overhanging horizontal slab
,”
Ocean Eng.
262
,
112313
(
2022b
).
42.
Huang
,
J.
and
Chen
,
G.
, “
Developing the estimations of wave forces, moments and force-impulses on the vertical wall with overhanging slab
,”
Ocean Eng.
266
,
112865
(
2022c
).
43.
Istrati
,
D.
,
Buckle
,
I.
,
Lomonaco
,
P.
, and
Yim
,
S.
, “
Deciphering the tsunami wave impact and associated connection forces in open-girder coastal bridges
,”
J. Mar. Sci. Eng.
6
,
148
(
2018
).
44.
Japan Maritime Centre
,
Japan Maritime Centre: The impact of the Great East Japan Earthquake on the Volume of Seaborne Cargo Movement
(
Japan Maritime Centre
,
2011
).
45.
Kihara
,
N.
,
Niida
,
Y.
,
Takabatake
,
D.
,
Kaida
,
H.
,
Shibayama
,
A.
, and
Miyagawa
,
Y.
, “
Large-scale experiments on tsunami-induced pressure on a vertical tide wall
,”
Coastal Eng.
99
,
46
63
(
2015
).
46.
Kihara
,
N.
,
Arikawa
,
T.
,
Asai
,
T.
,
Hasebe
,
M.
,
Ikeya
,
T.
,
Inoue
,
S.
,
Kaida
,
H.
,
Matsutomi
,
H.
,
Nakano
,
Y.
,
Okuda
,
Y.
,
Okuno
,
S.
,
Ooie
,
T.
,
Shigihara
,
Y.
,
Shoji
,
G.
,
Tateno
,
T.
,
Tsurudome
,
C.
, and
Watanabe
,
M.
, “
A physical model of tsunami inundation and wave pressures for an idealized coastal industrial site
,”
Coastal Eng.
169
,
103970
(
2021
).
47.
Kirkoz
,
M.
, “
Breaking and run-up of long waves, tsunamis: Their science and engineering
,” in
Proceedings of the 10th IUGG International Tsunami Symposium
(
Terra Scientific Tokyo
,
1983
).
48.
Kisacik
,
D.
,
Tarakcioglu
,
G. O.
, and
Troch
,
P.
, “
Wave-induced uprush jet velocity on a vertical structure
,”
Ocean Eng.
127
,
103
113
(
2016
).
49.
Kisacik
,
D.
,
Troch
,
P.
, and
Bogaert
,
P.
, “
Description of loading conditions due to violent wave impacts on a vertical structure with an overhanging horizontal cantilever slab
,”
Coastal Eng.
60
,
201
226
(
2012a
).
50.
Kisacik
,
D.
,
Troch
,
P.
, and
Bogaert
,
P.
, “
Experimental study of violent wave impact on a vertical structure with an overhanging horizontal cantilever slab
,”
Ocean Eng.
49
,
1
15
(
2012b
).
51.
Kisacik
,
D.
,
Troch
,
P.
,
Bogaert
,
P.
, and
Caspeele
,
R.
, “
Investigation of uplift impact forces on a vertical wall with an overhanging horizontal cantilever slab
,”
Coastal Eng.
90
,
12
22
(
2014
).
52.
Ko
,
H. T.-S.
and
Yeh
,
H.
, “
On the splash-up of tsunami bore impact
,”
Coastal Eng.
131
,
1
11
(
2018
).
53.
Lai
,
X.
,
Deng
,
X.
,
Chen
,
C.
,
Peng
,
C.
,
Li
,
Z.
, and
Chen
,
H.
, “
Study on the relationship between tsunami waves in dam break state and initial water levels
,”
Brodogradnja
74
,
89
103
(
2023
).
54.
Lamarre
,
E.
and
Melville
,
W.
, “
Air entrainment and dissipation in breaking waves
,”
Nature
351
,
469
472
(
1991
).
55.
Lauber
,
G.
and
Hager
,
W. H.
, “
Experiments to dambreak wave: Horizontal channel
,”
J. Hydraul. Res.
36
,
291
307
(
1998
).
56.
Liu
,
Q.
,
Sun
,
T.
,
Wang
,
D.
, and
Wei
,
Z.
, “
Wave uplift force on horizontal panels: A laboratory study
,”
J. Oceanol. Limnol.
37
,
1899
(
2019
).
57.
Liu
,
S.
,
Nistor
,
I.
,
Mohammadian
,
A.
, and
Azimi
,
A. H.
, “
Experimental and numerical investigation of beach slope effects on the hydrodynamic loading of tsunami-like surges on a vertical wall
,”
J. Mar. Sci. Eng.
10
,
1580
(
2022
).
58.
Lundgren
,
H.
, “
Wave shock forces: An analysis on deformations and wave forces in the wave and the foundation
,” in paper
presented at the Symposium Research on Wave Action
,
Delft, The Netherlands
, March 24–26, 1969 (
Citeseer
,
1969
).
59.
Mai
,
T.
,
Mai
,
C.
,
Raby
,
A.
, and
Greaves
,
D. M.
, “
Aeration effects on water-structure impacts: Part 2. Wave impacts on a truncated vertical wall
,”
Ocean Eng.
186
,
106053
(
2019
).
60.
McGovern
,
D. J.
,
Robinson
,
T.
,
Chandler
,
I. D.
,
Allsop
,
W.
, and
Rossetto
,
T.
, “
Pneumatic long-wave generation of tsunami-length waveforms and their runup
,”
Coastal Eng.
138
,
80
97
(
2018
).
61.
McGovern
,
D. J.
,
Allsop
,
W.
,
Rossetto
,
T.
, and
Chandler
,
I.
, “
Large-scale experiments on tsunami inundation and overtopping forces at vertical sea walls
,”
Coast. Eng.
179
,
104222
(
2023
).
62.
Mokhtar
,
Z. A.
,
Mohammed
,
T. A.
,
Yusuf
,
B.
, and
Lau
,
T. L.
, “
Experimental investigation of tsunami bore impact pressure on a perforated seawall
,”
Appl. Ocean Res.
84
,
291
301
(
2019
).
63.
Moon
,
W. C.
,
Lau
,
T. L.
, and
Puay
,
H. T.
, “
Experimental investigations of tsunami loading on internal wall of a building with various openings and wall configurations
,”
Coastal Eng.
158
,
103691
(
2020
).
64.
Moon
,
W. C.
,
Puay
,
H. T.
, and
Lau
,
T. L.
, “
Investigations on the effect of roof types on wave impinging on a building: A hybrid experimental-numerical approach
,”
Coastal Eng.
164
,
103836
(
2021
).
65.
Nakasu
,
T.
,
Ono
,
Y.
, and
Pothisiri
,
W.
, “
Why did Rikuzentakata have a high death toll in the 2011 Great East Japan earthquake and tsunami disaster? Finding the devastating disaster's root causes
,”
Int. J. Disaster Risk Reduct.
27
,
21
36
(
2018
).
66.
Nandasena
,
N. A. K.
and
Tanaka
,
N.
, “
Boulder transport by high energy: Numerical model-fitting experimental observations
,”
Ocean Eng.
57
,
163
179
(
2013
).
67.
Nouri
,
Y.
,
Nistor
,
I.
,
Palermo
,
D.
, and
Cornett
,
A.
, “
Experimental investigation of tsunami impact on free standing structures
,”
Coastal Eng. J.
52
,
43
70
(
2010
).
68.
Nouri
,
Y.
,
Dalrymple
,
R. A.
, and
Igusa
,
T.
, “
Decomposing damped incident and reflected waves using correlation and quasi-linearization methods
,”
Coastal Eng.
91
,
181
190
(
2014
).
69.
Oumeraci
,
H.
,
Klammer
,
P.
, and
Partenscky
,
H. W.
, “
Classification of breaking wave loads on vertical structures
,”
J. Waterw., Port, Coastal, Ocean Eng.
119
,
381
397
(
1993
).
70.
Park
,
H.
,
Tomiczek
,
T.
,
Cox
,
D.
,
Lindt
,
J. V. D.
, and
Lomonaco
,
P.
, “
Experimental modeling of horizontal and vertical wave forces on an elevated coastal structure
,”
Coastal Eng.
128
,
58
74
(
2017
).
71.
Peng
,
C.
,
Chen
,
C.
,
Nandasena
,
N. A. K.
,
Deng
,
X.
,
Cai
,
F.
, and
Guan
,
D.
, “
Experimental study of dam-break-like tsunami loads on vertical structures with overhanging horizontal slabs: Slab with air chamber
,”
Ocean Eng.
311
,
118999
(
2024
).
72.
Rahman
,
S.
,
Akib
,
S.
,
Khan
,
M. T. R.
, and
Shirazi
,
S. M.
, “
Experimental study on tsunami risk reduction on coastal building fronted by sea wall
,”
Sci. World J.
2014
,
729357
.
73.
Ramsden
,
J. D.
,
Tsunamis: Forces on a Vertical Wall Caused by Long Waves, Bores, and Surges on a Dry Bed
(
California Institute of Technology
,
1993
).
74.
Ravindar
,
R.
,
Sriram
,
V.
,
Schimmels
,
S.
, and
Stagonas
,
D.
, “
Approaches in scaling small-scale experiments on the breaking wave interactions with a vertical wall attached with recurved parapets
,”
J. Waterw., Port, Coastal, Ocean Eng.
147
,
04021034
(
2021
).
75.
Ren
,
B.
and
Wang
,
Y.
, “
Laboratory study of random wave slamming on a piled wharf with different shore connecting structures
,”
Coastal Eng.
52
,
463
(
2005
).
76.
Robke
,
B. R.
and
Voett
,
A.
, “
The tsunami phenomenon
,”
Prog. Oceanogr.
159
,
296
322
(
2017
).
77.
Ruggeri
,
P.
,
Fruzzetti
,
V. M. E.
, and
Scarpelli
,
G.
, “
Renovation of quay walls to meet more demanding requirements: Italian experiences
,”
Coastal Eng.
147
,
25
33
(
2019
).
78.
Saatcioglu
,
M.
,
Ghobarah
,
A.
, and
Nistor
,
I.
, “
Effects of the December 26, 2004 Sumatra Earthquake and Tsunami on Physical Infrastructure
,”
ISET J. Earthquake Technol.
457
,
79
(
2004
).
79.
Salem
,
H.
,
Mohssen
,
S.
,
Kosa
,
K.
, and
Hosoda
,
A.
, “
Collapse analysis of Utatsu Ohashi bridge damaged by Tohuku Tsunami using applied element method
,”
J. Adv. Concr. Technol.
12
,
388
402
(
2014
).
80.
Serinaldi
,
F.
and
Cuomo
,
G.
, “
Characterizing impulsive wave-in-deck loads on coastal bridges by probabilistic models of impact maxima and rise times
,”
Coastal Eng.
58
,
908
926
(
2011
).
81.
Shafiei
,
S.
,
Melville
,
B. W.
, and
Shamseldin
,
A. Y.
, “
Experimental investigation of tsunami bore impact force and pressure on a square prism
,”
Coastal Eng.
110
,
1
16
(
2016
).
82.
Shafiei
,
S.
,
Melville
,
B. W.
, and
Shamseldin
,
A. Y.
, “
Instant tsunami bore pressure and force on a cylindrical structure
,”
J. Hydro-environ. Res.
19
,
28
40
(
2018
).
83.
Takahashi
,
S.
,
Tanimoto
,
K.
, and
Miyanaga
,
S.
, “
Uplift wave forces due to compression of enclosed air layer and their similitude law
,”
Coastal Eng. J.
28
,
191
206
(
1985
).
84.
Thoresen
,
C. A.
,
Port Designer's Handbook
(
Thomas Telford
London, UK
,
2010
).
85.
Wang
,
X.
and
Xie
,
T.-Q.
, “
Cavitation erosion behavior of hydraulic concrete under high-speed flow
,”
Anti-Corros. Methods Mater.
69
,
81
93
(
2022
).
86.
Wuthrich
,
D.
,
Pfister
,
M.
,
Nistor
,
I.
, and
Schleiss
,
A.
, “
Experimental study on the hydrodynamic impact of tsunami-like waves against impervious free-standing buildings
,”
Coastal Eng. J.
60
,
180
199
(
2018a
).
87.
Wuthrich
,
D.
,
Pfister
,
M.
,
Nistor
,
I.
, and
Schleiss
,
A. J.
, “
Experimental study on forces exerted on buildings with openings due to extreme hydrodynamic events
,”
Coastal Eng.
140
,
72
86
(
2018b
).
88.
Wuthrich
,
D.
,
Pfister
,
M.
, and
Schleiss
,
A. J.
, “
Effect of bed roughness on tsunami-like waves and induced loads on buildings
,”
Coastal Eng.
152
,
103508
(
2019
).
89.
Wang
,
L.
,
Han
,
Z.
, and
Zhu
,
Z.
, “
The application of L-profiled deck in updating of old berth structures
,”
Port Eng. Technol.
53
,
65
67
(
2016
) (in Chinese).
90.
Xie
,
P.
and
Chu
,
V. H.
, “
The impact of tsunami wave force on elevated coastal structures
,”
Coastal Eng.
162
,
103777
(
2020
).
91.
Xu
,
Z.
,
Melville
,
B.
,
Whittaker
,
C.
,
Nandasena
,
N. A. K.
, and
Shamseldin
,
A.
, “
Mitigation of tsunami bore impact on a vertical wall behind a barrier
,”
Coastal Eng.
164
,
103833
(
2021
).
92.
Yang
,
X.
and
Cui
,
L.
, “
Analysis on wharf structure type selection of the first and second basin in Tongzhou Bay
,”
China Harbour Eng.
37
,
44
49
(
2017
) (in Chinese).
93.
Zhai
,
Y.
,
Xu
,
W.
,
Luo
,
J.
, and
Li
,
J.
, “
Experimental study on the characteristics of microjets and shock waves of cavitation bubbles near elastic boundaries
,”
Ocean Eng.
257
,
111664
(
2022
).
94.
Zhang
,
N.
,
Xiao
,
L.
,
Guo
,
Y.
,
Yang
,
L.
, and
Chen
,
G.
, “
Parametric study of wave impact pressure impulse and characteristic pressure on a square column with overhanging deck
,”
Ocean Eng.
258
,
111722
(
2022
).
You do not currently have access to this content.