The onset of dynamic stall limits the maximum airspeed of helicopters. For Reynolds numbers where laminar separation precedes transition, the bursting of a leading edge laminar separation bubble can initiate dynamic stall. Using large-eddy simulations, the effect of Reynolds and Mach number on bubble bursting is investigated for the National Advisory Committee for Aeronautics (NACA) 0012 wing section that is undergoing a harmonic pitching motion. Time histories of the lift and moment coefficient as well as the skin-friction and wall-pressure coefficient are compared for chord-based Reynolds numbers of 100 000, 200 000, and 400 000 and Mach numbers of 0.1 and 0.4. With increasing Reynolds number, the bubble size prior to bursting is diminished. For the larger Mach number, the bubble is larger and bursts earlier. To understand the observed behavior, spanwise and phase-averaged flow fields just prior to bubble bursting for Re = 100 000 are analyzed with a compressible biglobal stability computer program. The biglobal analysis reveals dominant two-dimensional modes for M = 0.1 and M = 0.4. For the higher Mach number, the growth rates are reduced, which explains the longer bubble. Observed oblique waves in the laminar separation bubble for M = 0.4 may result from the resonance of three-dimensional waves with two-dimensional shear layer waves.

1.
W. J.
McCroskey
, “
The phenomenon of dynamic stall
,” Technical Report, NASA Tech. Memorandum 81264,
1981
.
2.
S. C.
Naigle
, “
Flow control of compressible dynamic stall using vortex generator jets
,” Ph.D. thesis (
The Ohio State University
,
2016
).
3.
R.
Gupta
and
P. J.
Ansell
, “
Investigation of the effects of Reynolds number on the unsteady flow physics of airfoil dynamic stall
,” in
Proc. AIAA Aerospace Sciences Meet.
, AIAA-Paper 2018-0354 (2018).
4.
N. D.
Ham
, “
Some recent MIT research on dynamic stall
,”
J. Aircraft
9
,
378
379
(
1972
).
5.
M.
Gaster
,
The Structure and Behaviour of Laminar Separation Bubbles
(
Citeseer
,
1967
).
6.
P.
Huerre
and
P. A.
Monkewitz
, “
Local and global instabilities in spatially developing flows
,”
Annu. Rev. Fluid Mech.
22
,
473
537
(
1990
).
7.
D. A.
Hammond
and
L. G.
Redekopp
, “
Local and global instability properties of separation bubbles
,”
Eur. J. Mech.-B/Fluids
17
,
145
164
(
1998
).
8.
U.
Rist
and
U.
Maucher
, “
Investigations of time-growing instabilities in laminar separation bubbles
,”
Eur. J. Mech.-B/Fluids
21
,
495
509
(
2002
).
9.
R.
Gupta
and
P. J.
Ansell
, “
Unsteady flow physics of airfoil dynamic stall
,”
AIAA J.
57
,
165
175
(
2019
).
10.
A.
Grille Guerra
,
C.
Mertens
,
J.
Little
, and
B.
van Oudheusden
, “
Experimental characterization of an unsteady laminar separation bubble on a pitching wing
,”
Exp. Fluids
64
,
16
(
2023
).
11.
M. R.
Visbal
, “
Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations
,” in
Proceedings of the 52nd Aerospace Sciences Meeting
(
ARC
,
2014
), p.
0591
.
12.
M. R.
Visbal
and
D. J.
Garmann
, “
Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations
,”
AIAA J.
56
,
46
63
(
2018
).
13.
M. R.
Visbal
and
S. I.
Benton
, “
Exploration of high-frequency control of dynamic stall using large-eddy simulations
,”
AIAA J.
56
,
2974
2991
(
2018
).
14.
S. I.
Benton
and
M. R.
Visbal
, “
Extending the Reynolds number range of high-frequency control of dynamic stall
,”
AIAA J.
57
,
2675
2681
(
2019
).
15.
M.
Visbal
and
D.
Garmann
, “
Mitigation of dynamics stall over a pitching finite wing using high-frequency actuation
,”
AIAA J.
58
,
6
15
(
2020
).
16.
S.
Benton
and
M.
Visbal
, “
The onset of dynamic stall at a high, transitional Reynolds number
,”
J. Fluid Mech.
861
,
860
885
(
2019
).
17.
S. I.
Benton
and
M. R.
Visbal
, “
Effects of compressibility on dynamic-stall onset using large-eddy simulation
,”
AIAA J.
58
,
1194
1205
(
2020
).
18.
S. I.
Benton
and
M. R.
Visbal
, “
Effects of leading-edge geometry on the onset of dynamic stall
,”
AIAA J.
56
,
4195
4198
(
2018
).
19.
M. R.
Visbal
and
D. J.
Garmann
, “
Passive control of dynamic stall using a flow-driven micro-cavity actuator
,”
Theor. Comput. Fluid Dyn.
37
,
289
303
(
2023
).
20.
G.
Wen
and
A.
Gross
, “
Numerical investigation of deep dynamic stall for a helicopter blade section
,”
AIAA J.
57
,
1434
1451
(
2019
).
21.
G.
Wen
and
A.
Gross
, “
Bi-global linear stability analysis of laminar separation bubble for helicopter blade section undergoing dynamic stall
,” in
AIAA Scitech 2021 Forum
(
ARC
,
2021
), p.
0498
.
22.
S.
Sudharsan
,
S.
Narsipur
, and
A.
Sharma
, “
Effects of compressibility on leading-edge dynamic stall criteria
,” in
AIAA AVIATION 2023 Forum
, AIAA-Paper 2023–3371 (
2023
).
23.
A.
Rezaeiha
,
H.
Montazeri
, and
B.
Blocken
, “
Scale-adaptive simulation (SAS) of dynamic stall on a wind turbine
,” in
Progress in Hybrid RANS-LES Modelling
(
Springer International Publishing
,
2020
).
24.
P.
Balakumar
, “
Wall-modeled les for flows over an NACA-0012 airfoil
,” in
AIAA Scitech 2020 Forum
, AIAA-Paper 20201810 (
2020
).
25.
C.
Rethmel
,
J.
Little
,
K.
Takashima
,
A.
Sinha
,
I.
Adamovich
, and
M.
Samimy
, “
Flow separation control over an airfoil with nanosecond pulse driven DBD plasma actuators
,” in
49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition
, AIAA-Paper 2011-487 (
2011
).
26.
H.
Tian
,
T.-L.
Ren
,
D.
Xie
,
Y.-F.
Wang
,
C.-J.
Zhou
,
T.-T.
Feng
,
D.
Fu
,
Y.
Yang
,
P.-G.
Peng
,
L.-G.
Wang
et al, “
Graphene-on-paper sound source devices
,”
ACS Nano
5
,
4878
4885
(
2011
).
27.
C.-A.
Yeh
,
P.
Munday
, and
K.
Taira
, “
Use of local periodic heating for separation control on a NACA 0012 airfoil
,” in
55th AIAA Aerospace Sciences Meeting
, AIAA-Paper 2017-1451 (
2017
).
28.
A.
Gross
and
H.
Fasel
, “
High-order-accurate numerical method for complex flows
,”
AIAA J.
46
,
204
214
(
2008
).
29.
D. S.
Balsara
,
S.
Garain
, and
C.-W.
Shu
, “
An efficient class of WENO schemes with adaptive order
,”
J. Comput. Phys.
326
,
780
804
(
2016
).
30.
S.
Hosseinverdi
and
H. F.
Fasel
, “
Numerical investigation of laminar–turbulent transition in laminar separation bubbles: The effect of free-stream turbulence
,”
J. Fluid Mech.
858
,
714
759
(
2019
).
31.
M. S.
Istvan
and
S.
Yarusevych
, “
Effects of free-stream turbulence intensity on transition in a laminar separation bubble formed over an airfoil
,”
Exp. Fluids
59
,
52
(
2018
).
32.
A.
Gross
and
H. F.
Fasel
, “
Multi-block Poisson grid generator for cascade simulations
,”
Math. Comput. Simul.
79
,
416
428
(
2008
).
33.
A.
Gross
and
H.
Fasel
, “
Characteristic ghost cell boundary condition
,”
AIAA J.
45
,
302
306
(
2007
).
34.
B. E.
Chanez Dozal
,
S.
Lee
, and
A.
Gross
, “
Numerical investigation of compressibility effect on dynamic stall for NACA0012 wing section
,” in
AIAA Aviation Forum and Ascend 2024
(
ARC
,
2024
), p.
4433
.
35.
M.
Hermanns
and
J. A.
Hernandez
, “
Stable high-order finite-difference methods based on non-uniform grid point distributions
,”
Int. J. Numer. Methods Fluids
56
,
233
255
(
2008
).
36.
E.
Jumper
,
S.
Schreck
, and
R.
Dimmick
, “
Lift-curve characteristics for an airfoil pitching at constant rate
,”
J. Aircraft
24
,
680
687
(
1987
).
37.
M. R.
Visbal
, “
Dynamic stall of a constant-rate pitching airfoil
,”
J. Aircraft
27
,
400
407
(
1990
).
38.
T. C.
Corke
and
F. O.
Thomas
, “
Dynamic stall in pitching airfoils: Aerodynamic damping and compressibility effects
,”
Annu. Rev. Fluid Mech.
47
,
479
505
(
2015
).
39.
S.
Lee
and
A.
Gross
, “
Large-eddy simulations of dynamic stall for a NACA0012 wing section
,” in
AIAA Scitech 2024 Forum
(
ARC
,
2024
), p.
1352
.
40.
J. C. R.
Hunt
,
A. A.
Wray
, and
P.
Moin
, “
Eddies, stream, and convergence zones in turbulent flows
,”
Technical Report, No. CTR-S88
,
Center for Turbulence Research
,
Stanford, CA
,
1988
.
You do not currently have access to this content.