In the Bonan block of the Jiyang Depression, the lacustrine shale exhibits various types of organic-rich laminar lithofacies with complex distributions in lamination density and thickness, showing clear cyclic variations vertically over scales of several meters or even centimeters. These variations in lamination density and depth significantly impact the effectiveness of fracturing treatments in well placement. This study utilized downhole cores from the Shahejie Formation in the Bonan block, and based on the development characteristics of the lamination, a sampling scheme was designed. Small-scale true triaxial hydraulic fracturing experiments were conducted in the laboratory, focusing on the relationship between lamination density and perforation locations. Post-experiment analyses using computed tomography and acoustic emission monitoring examined fracture morphology, width variations, and proppant migration and placement within the fractures. The results indicate that high lamination density influences the propagation path of hydraulic fractures, restricting their vertical penetration through layers. Fracture initiation points closer to the lamination result in lower fluid injection pressure rise rates, thereby reducing the efficiency of the fracturing fluid. Lamination activated at the same depth generally produces narrower fractures than the main hydraulic fractures. Proppants are predominantly distributed within the main hydraulic fractures, with limited vertical migration into the lamination, resulting in the propped volume accounting for less than 10% of the total fracture volume. This study provides new insights and optimization strategies for well placement and perforation positioning in the hydraulic fracturing of organic-rich laminar lithofacies shale reservoirs.

1.
Y.
Yang
, “
Enrichment and high production regularities of shale oil reservoirs in continental rift basin: A case study of Jiyang Depression, Bohai Bay Basin
,”
Pet. Geol. Recovery Effic.
30
(
1
),
1
20
(
2023
).
2.
Y.
Wang
,
X.
Wang
,
G.
Song
,
H.
Liu
,
D.
Zhu
,
D.
Zhu
,
J.
Ding
,
W.
Yang
,
Y.
Yin
,
S.
Zhang
, and
M.
Wang
, “
Genetic connection between mud shale lithofacies and shale oil enrichment in Jiyang Depression, Bohai Bay Basin
,”
Pet. Explor. Dev.
43
(
5
),
759
768
(
2016
).
3.
M.
Song
,
H.
Liu
,
Y.
Wang
, and
Y.
Liu
, “
Enrichment rules and exploration practices of Paleogene shale oil in Jiyang Depression, Bohai Bay Basin, China
,”
Pet. Explor. Dev.
47
(
2
),
242
253
(
2020
).
4.
X.
Guo
,
X.
Ma
,
M.
Li
,
M.
Qian
, and
Z.
Hu
, “
Mechanisms for lacustrine shale oil enrichment in Chinese sedimentary basins
,”
Oil Gas Geol.
44
(
6
),
1333
1349
(
2023
).
5.
Z.
Xiong
,
Y.
Cao
,
G.
Wang
,
C.
Liang
,
X.
Shi
,
M.
Li
,
Y.
Fu
, and
S.
Zhao
, “
Influence of laminar structure differences on the fracability of lacustrine fine-grained sedimentary rocks
,”
Acta Petroleisinica
40
(
1
),
74
85
(
2019
).
6.
Z.
Liang
,
C.
Tang
,
H.
Li
,
T.
Xu
, and
T.
Yang
, “
A numerical study on failure process of transversely isotropic rock subjected to uniaxial compression
,”
Rock Soil Mech.
26
(
1
),
57
62
(
2005
).
7.
G.
Zhang
,
Y.
Li
,
C.
Yang
,
W.
Liu
,
X.
Shi
, and
C.
Yang
, “
Physical simulation of deformation and failure mechanism of soft and hard inter-bedded salt rocks
,”
Chin. J. Rock Mech. Eng.
31
(
9
),
1813
1820
(
2012
).
8.
Q.
Li
,
M.
Chen
, and
Y.
Jin
, “
Experimental research on failure modes and mechanical behaviors of gas-bearing shale
,”
Chin. J. Rock Mech. Eng.
31
(
S2
),
3763
3771
(
2012
) .
9.
D.
Xu
,
R.
Hu
,
W.
Gao
, and
J.
Xia
, “
Effects of laminated structure on hydraulic fracture propagation in shale
,”
Pet. Explor. Dev.
42
(
4
),
573
579
(
2015
).
10.
A. S.
Athavale
and
J. L.
Miskimins
,
Laboratory Hydraulic Fracturing Tests on Small Homogeneous and Laminated Blocks
(
OnePetro
,
2008
).
11.
Z.
Zhou
, “
Mechanism of fracture extension and process countermeasures in grain-type shale oil reservoirs
,”
Spec. Oil Gas Reservoirs
30
(
6
),
141
149
(
2023
).
12.
Y.
Wang
,
B.
Hou
,
D.
Wang
, and
Z.
Jia
, “
Features of fracture height propagation in cross-layer fracturing of shale oil reservoirs
,”
Pet. Explor. Dev.
48
(
2
),
469
479
(
2021
).
13.
C. L.
Cipolla
,
E. P.
Lolon
,
M. J.
Mayerhofer
, and
N. R.
Warpinski
, “
The effect of proppant distribution and un-propped fracture conductivity on well performance in unconventional gas reservoirs
,” in
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX (
OnePetro
,
2009
).
14.
C.
Cipolla
and
M.
Mack
, “
Reducing exploration and appraisal risk in low-permeability reservoirs using microseismic fracture mapping
,” in
Canadian Unconventional Resources and International Petroleum Conference
, Calgary, AB (
2010
).
15.
M. C.
Vincent
, “
The next opportunity to improve hydraulic-fracture stimulation
,”
J. Pet. Technol.
64
(
3
),
118
127
(
2012
).
16.
B. C.
Klingensmith
,
M.
Hossaini
, and
S.
Fleenor
, “
Considering far-field fracture connectivity in stimulation treatment designs in the Permian Basin
,” in
SPE/AAPG/SEG Unconventional Resources Technology Conference
, San Antonio, TX (
2015
).
17.
R.
(Raki) Sahai
,
J. L.
Miskimins
, and
K. E.
Olson
, “
Laboratory results of proppant transport in complex fracture systems
,” in
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX (
2014
).
18.
H. D.
Brannon
,
W. D.
Wood
, and
R. S.
Wheeler
, “
Improved understanding of proppant transport yields new insight to the design and placement of fracturing treatments
,” in
SPE Annual Technical Conference and Exhibition
, San Antonio, TX (
2006
).
19.
R. D.
Barree
and
M. W.
Conway
, “
Experimental and numerical modeling of convective proppant transport
,” in
SPE Annual Technical Conference and Exhibition
, New Orleans, LA (
1994
).
20.
P. E.
Clark
and
J. A.
Quadir
, “
Prop transport in hydraulic fractures: A critical review of particle settling velocity equations
,” in
SPE/DOE Low Permeability Gas Reservoirs Symposium
, Denver, CO (
1981
).
21.
X.
Yang
,
G.
Zhang
,
Z.
Liu
,
H.
Dong
, and
Y.
Wang
, “
Experimental research on the variation of fracture width in hydraulic fracturing process
,”
Chin. J. Rock Mech. Eng.
36
(
9
),
2232
2237
(
2017
).
22.
Y.
Zou
,
S.
Shi
,
S.
Zhang
,
J.
Li
,
F.
Wang
,
J.
Wang
, and
X.
Zhang
, “
Hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs
,”
Pet. Explor. Dev.
49
(
5
),
1185
1194
(
2022
).
23.
J.
Wang
,
A.
Jia
,
Y.
Wei
,
C.
Jia
,
Y.
Qi
,
H.
Yuan
, and
Y.
Jin
, “
Optimization workflow for stimulation-well spacing design in a multiwell pad
,”
Pet. Explor. Dev.
46
(
5
),
1039
1992
(
2019
).
24.
B.
Hou
,
Z.
Chang
,
W.
Fu
,
Y.
Muhadasi
, and
M.
Chen
, “
Fracture initiation and propagation in a deep shale gas reservoir subject to an alternating-fluid-injection hydraulic-fracturing treatment
,”
SPE J.
24
(
4
),
1839
1855
(
2019
).
25.
P.
Zhang
,
T.
Ma
, and
Y.
Liu
, “
Influence of heterogeneity, natural fracture, and bedding plane on fracture propagation in the vicinity of a borehole
,” in 11th Asian Rock Mechanics Symposium, Beijing, China (
ISRM
,
2021
).
26.
J.
Li
and
K.
Wu
, “
An efficient model for hydraulic fracture height growth considering the effect of bedding layers in unconventional shale formations
,”
SPE J.
27
(
6
),
3740
3756
(
2022
).
27.
B. M.
Bajestani
and
A.
Osouli
, “
Effect of hydraulic fracture and natural fractures interaction in fracture propagation
,” in
13th ISRM International Congress of Rock Mechanics
, Montreal, PQ (
2015
).
28.
O.
Kolawole
and
I.
Ispas
, “
Interaction between hydraulic fractures and natural fractures: Current status and prospective directions
,”
J. Pet. Explor. Prod. Technol.
10
(
4
),
1613
1634
(
2020
).
29.
W.
Campbell
,
J.
Wicker
, and
J.
Courtier
, “
Natural and hydraulic fracture density prediction and identification of controllers
,” in
Proceedings of the 6th Unconventional Resources Technology Conference
(
2018
).
30.
L.
Yuan
,
B.
Hou
,
W.
Li
,
Z.
Xiong
,
M.
Qin
,
M.
Chen
, and
Y.
Li
, “
Experimental investigation on fracture geometry in multi-stage fracturing under tri-axial stresses
,” in
50th U.S. Rock Mechanics/Geomechanics Symposium
, Houston, TX (
2016
).
31.
Y.
Zou
,
N.
Li
,
X.
Ma
,
S.
Zhang
, and
S.
Li
, “
Experimental study on the growth behavior of supercritical CO2-induced fractures in a layered tight sandstone formation
,”
J. Nat. Gas Sci. Eng.
49
,
145
156
(
2018
).
32.
E.
Detournay
, “
Mechanics of hydraulic fractures
,”
Annu. Rev. Fluid Mech.
48
(
1
),
311
339
(
2016
).
33.
E. V.
Dontsov
, “
An approximate solution for a plane strain hydraulic fracture that accounts for fracture toughness, fluid viscosity, and leak-off
,”
Int. J. Fract.
205
(
2
),
221
237
(
2017
).
34.
A.
Madyarov
,
R.
Prioul
,
A.
Zutshi
,
N.
Seprodi
,
D.
Groves
,
J.
Pei
, and
S.-W.
Wong
,
Understanding the Impact of Completion Designs on Multi-Stage Fracturing via Block Test Experiments
(
OnePetro
,
2021
).
35.
A. P.
Bunger
,
R. G.
Jeffrey
, and
E.
Detournay
,
Application of Scaling Laws to Laboratory-Scale Hydraulic Fractures
(
OnePetro
,
2005
).
36.
Y.
Zou
,
S.
Shi
,
S.
Zhang
,
T.
Yu
, and
G.
Tian
, “
Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate: A case study of tight conglomerate of Mahu sag in Junggar Basin, NW China
,”
Pet. Explor. Dev.
48
,
1383
1392
(
2021
).
37.
C.
Cipolla
,
X.
Weng
,
M.
Mack
,
U.
Ganguly
,
H.
Gu
,
O.
Kresse
, and
C.
Cohen
, “
Integrating microseismic mapping and complex fracture modeling to characterize fracture complexity
,” in
SPE Hydraulic Fracturing Technology Conference
, The Woodlands, TX (
2011
).
38.
N.
Li
,
S.
Zhang
,
Y.
Zou
,
X.
Ma
,
Z.
Zhang
,
S.
Li
,
M.
Chen
, and
Y.
Sun
, “
Acoustic emission response of laboratory hydraulic fracturing in layered shale
,”
Rock Mech. Rock Eng.
51
(
11
),
3395
3406
(
2018
).
39.
R.
Xue
,
J.
Guo
,
Z.
Zhao
,
G.
Zhou
, and
X.
Meng
, “
Numerical simulation of fracture propagation in horizontal wells of Shale Reservoirs in Jiyang Depression
,”
J. Southwest Pet. Univ.
41
(
2
),
84
96
(
2019
).
40.
T.
Zhou
,
H.
Wang
,
F.
Li
,
Y.
Li
,
Y.
Zou
, and
C.
Zhang
, “
Numerical simulation of hydraulic fracture propagation in laminated shale reservoirs
,”
Pet. Explor. Dev.
47
(
5
),
1117
1130
(
2020
).
41.
X.
Chen
,
R.
Liu
,
B.
Xie
,
Y.
Pan
, and
X.
He
, “
Productivity model of fractured horizontal wells in shale oil reservoirs with bedding fractures considered
,”
Xinjiang Oil Gas
18
(
1
),
73
79
(
2022
).
42.
Y.
Li
,
X.
Ma
,
N.
Li
,
J.
Xiao
,
F.
He
,
Y.
Zhang
, and
Z.
Zhang
, “
Experimental study on influence of bedding planes on stimulation effect of hydraulic fracturing in shale reservoir
,”
J. Xi'an Shiyou Univ.
32
(
5
),
62
67 + 95
(
2017
).
43.
X.
Yan
,
D.
Wang
, and
H.
Yu
, “
Influence of high-density bedding plane characteristics on hydraulic fracture propagation in shale oil reservoir
,”
Comput. Model. Eng. Sci.
140
(
3
),
3051
3071
(
2024
).
44.
T.
Guo
,
M.
Lv
,
M.
Chen
,
Y.
Xu
,
D.
Weng
,
Z.
Qu
,
C.
Dai
,
J.
Hou
, and
X.
Liu
, “
Proppant transport law in multi-branched fractures induced by volume fracturing
,”
Pet. Explor. Dev.
50
(
4
),
955
970
(
2023
).
45.
J.
Guo
,
T.
Tang
,
T.
Zhang
,
H.
Zhou
,
Y.
Liu
,
M.
Li
, and
R.
Yang
, “
Migration and distribution laws of proppant in multi-scale fractures during deep shale fracturing
,”
Nat. Gas Ind.
44
(
7
),
1
11
(
2024
).
46.
X.
Lin
,
Z.
Yang
,
Y.
Hu
,
X.
Xu
,
Y.
Liu
, and
P.
Luo
, “
Simulation of proppant placement and migration in shale volume fracturing and its application
,”
Pet. Geol. Oilfield Dev. Daqing
40
(
6
),
151
157
(
2021
).
47.
L.
Pan
,
Y.
Zhang
,
H.
Wang
,
J.
He
, and
C.
Lu
, “
Mechanism study on proppants division during shale complex fracturing of shale rocks
,”
J. China Univ. Pet.
44
(
1
),
61
70
(
2020
).
48.
L.
Pan
,
Y.
Zhang
,
L.
Cheng
,
C.
Lu
,
Y.
Kang
,
P.
He
, and
B.
Dong
, “
Migration and distribution of complex fracture proppant in shale reservoir volume fracturing
,”
Nat. Gas Ind.
38
(
5
),
61
70
(
2018
).
49.
W.
Xu
,
I.
Haddad
,
H.
Wang
,
X.
Zhao
,
D.
Zhao
,
J.
Wu
,
X.
Gu
,
D.
Yu
,
F.
Wu
,
D.
Yang
, and
Z.
Xin
, “
Characterizing the vertical heterogeneity and optimizing the horizontal well landing window in shale oil reservoirs: Case studies in Jiyang depression
,” in
The Unconventional Resources Technology Conference
(
OnePetro
,
2024
).
50.
F.
Yang
,
Q.
Qian
,
M.
Lu
,
W.
He
,
A.
Zhong
,
Z.
Zhang
,
D.
Zhu
, and
Y.
Zou
, “
Experimental study of plugging agent particle size and concentration on temporary plugging fracturing in shale formation
,”
Processes
12
(
6
),
1049
(
2024
).
51.
R.
Rickman
,
M.
Mullen
,
E.
Petre
,
B.
Grieser
, and
D.
Kundert
, “
A practical use of shale petrophysics for stimulation design optimization: All shale plays are not clones of the Barnett shale
,” in
SPE Annual Technical Conference and Exhibition
, Denver, CO (
2008
).
52.
C.
Lin
,
S.
Deng
,
J.
Mao
,
Z.
Jiang
,
X.
Chen
,
X.
Yang
,
Y.
Zhang
,
J.
He
,
Y.
Li
, and
C.
Zheng
, “
A new brittleness evaluation index for reservoir rocks based on fuzzy analytic hierarchy process and energy dissipation
,”
SPE J.
29
(
10
),
5272
5285
(
2024
).
53.
M.
Salah
,
M.
Ibrahim Mohamed
,
M.
Ibrahim
, and
C.
Pieprzica
, “
Influences of anisotropy on shale brittleness evaluation
,” in
SPE Annual Technical Conference and Exhibition
, Calgary, AB (
2019
).
54.
M.
Salah
,
M.
Ibrahim Mohamed
,
M.
Ibrahim
, and
C.
Pieprzica
, “
A newly developed approach to evaluate rock brittleness and fracability for hydraulic fracturing optimization in shale gas
,” in
SPE Western Regional Meeting
, San Jose, CA (
2019
).
You do not currently have access to this content.