Surrogate models that combine dimensionality reduction and regression techniques are essential to reduce the need for costly high-fidelity computational fluid dynamics data. New approaches using β-variational autoencoder (β-VAE) architectures have shown promise in obtaining high-quality low-dimensional representations of high-dimensional flow data while enabling physical interpretation of their latent spaces. We propose a surrogate model based on latent space regression to predict pressure distributions on a transonic wing given the flight conditions: Mach number and angle of attack. The β-VAE model, enhanced with principal component analysis (PCA), maps high-dimensional data to a low-dimensional latent space, showing a direct correlation with flight conditions. Regularization through β requires careful tuning to improve overall performance, while PCA preprocessing helps to construct an effective latent space, improving autoencoder training and performance. Gaussian process regression is used to predict latent space variables from flight conditions, showing robust behavior independent of β, and the decoder reconstructs the high-dimensional pressure field data. This pipeline provides insight into unexplored flight conditions. Furthermore, a fine-tuning process of the decoder further refines the model, reducing the dependence on β and enhancing accuracy. Structured latent space, robust regression performance, and significant improvements in fine-tuning collectively create a highly accurate and efficient surrogate model. Our methodology demonstrates the effectiveness of β-VAEs for aerodynamic surrogate modeling, offering a rapid, cost-effective, and reliable alternative for aerodynamic data prediction.

1.
J. P.
Fielding
,
Introduction to Aircraft Design
(
Cambridge University Press
,
2017
), Vol.
11
.
2.
J.
Li
,
X.
Du
, and
J. R.
Martins
, “
Machine learning in aerodynamic shape optimization
,”
Prog. Aerosp. Sci.
134
,
100849
(
2022
).
3.
R.
Yondo
,
E.
Andrés
, and
E.
Valero
, “
A review on design of experiments and surrogate models in aircraft real-time and many-query aerodynamic analyses
,”
Prog. Aerosp. Sci.
96
,
23
61
(
2018
).
4.
X.
Zhang
,
F.
Xie
,
T.
Ji
,
Z.
Zhu
, and
Y.
Zheng
, “
Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
,”
Comput. Methods Appl. Mech. Eng.
373
,
113485
(
2021
).
5.
R.
Yondo
,
K.
Bobrowski
,
E.
Andrés
, and
E.
Valero
, “
A review of surrogate modeling techniques for aerodynamic analysis and optimization: Current limitations and future challenges in industry
,” in
Advances in evolutionary Deterministic Methods Design, Optimization Control Engineering Sciences
(
Springer
,
2019
), pp.
19
33
.
6.
A.
Forrester
,
A.
Sobester
, and
A.
Keane
,
Engineering Design via Surrogate Modelling: A Practical Guide
(
John Wiley & Sons
,
2008
).
7.
X.
Du
,
P.
He
, and
J. R.
Martins
, “
Rapid airfoil design optimization via neural networks-based parameterization and surrogate modeling
,”
Aerosp. Sci. Technol.
113
,
106701
(
2021
).
8.
Q.
Du
,
T.
Liu
,
L.
Yang
,
L.
Li
,
D.
Zhang
, and
Y.
Xie
, “
Airfoil design and surrogate modeling for performance prediction based on deep learning method
,”
Phys. Fluids
34
,
015111
(
2022
).
9.
L.
Wang
,
G.
Misra
, and
X.
Bai
, “
A k nearest neighborhood-based wind estimation for rotary-wing VTOL UAVs
,”
Drones
3
,
31
(
2019
).
10.
J.
Nieto-Centenero
,
R.
Castellanos
,
A.
Gorgues
, and
E.
Andrés
, “
Fusing aerodynamic data using multi-fidelity gaussian process regression
,” in
15th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, EUROGEN 2023
(
Institute of Structural Analysis and Antiseismic Research National Technical University of Athens
,
2023
).
11.
H.
Zhao
,
Z.-H.
Gao
, and
L.
Xia
, “
Efficient aerodynamic analysis and optimization under uncertainty using multi-fidelity polynomial chaos-kriging surrogate model
,”
Comput. Fluids
246
,
105643
(
2022
).
12.
G.
Immordino
,
A.
Da Ronch
, and
M.
Righi
, “
Steady-state transonic flowfield prediction via deep-learning framework
,”
AIAA J.
62
,
1915
1931
(
2024
).
13.
G.
Berkooz
,
P.
Holmes
, and
J.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
14.
D. J.
Lucia
,
P. S.
Beran
, and
W. A.
Silva
, “
Reduced-order modeling: New approaches for computational physics
,”
Prog. Aerosp. Sci.
40
,
51
117
(
2004
).
15.
R.
Zimmermann
and
S.
Görtz
, “
Improved extrapolation of steady turbulent aerodynamics using a non-linear pod-based reduced order model
,”
Aeronaut. J.
116
,
1079
1100
(
2012
).
16.
H. V.
Ly
and
H. T.
Tran
, “
Modeling and control of physical processes using proper orthogonal decomposition
,” in
Computation and Control VI: Proceedings of the Sixth Bozeman Conference
[
Math. Comput. Modell.
33
,
223
236
(
2001
).
17.
T.
Bui-Thanh
,
M.
Damodaran
, and
K.
Willcox
, “
Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition
,”
AIAA J.
42
,
1505
1516
(
2004
).
18.
E.
Iuliano
and
D.
Quagliarella
, “
Proper orthogonal decomposition, surrogate modelling and evolutionary optimization in aerodynamic design
,”
Comput. Fluids
84
,
327
350
(
2013
).
19.
V.
Dolci
and
R.
Arina
, “
Proper orthogonal decomposition as surrogate model for aerodynamic optimization
,”
Int. J. Aerosp. Eng.
2016
,
8092824
.
20.
R.
Dupuis
,
J.-C.
Jouhaud
, and
P.
Sagaut
, “
Surrogate modeling of aerodynamic simulations for multiple operating conditions using machine learning
,”
AIAA J.
56
,
3622
3635
(
2018
).
21.
M.
Meilă
and
H.
Zhang
, “
Manifold learning: What, how, and why
,”
Annu. Rev. Stat. Appl.
11
,
393
(
2024
).
22.
T.
Franz
,
R.
Zimmermann
,
S.
Görtz
, and
N.
Karcher
, “
Interpolation-based reduced-order modelling for steady transonic flows via manifold learning
,”
Int. J. Comput. Fluid Dyn.
28
,
106
121
(
2014
).
23.
R.
Castellanos
,
J.
Bowen Varela
,
A.
Gorgues
, and
E.
Andrés
, “
An assessment of reduced-order and machine learning models for steady transonic flow prediction on wings
,” in ICAS (
2022
).
24.
R.
Halder
,
K.
Fidkowski
, and
K.
Maki
, “
An adaptive sampling algorithm for reduced-order models using isomap
,”
Int. J. Numer. Methods Eng.
125
,
e7427
(
2024
).
25.
J.
Nieto-Centenero
,
A.
Martínez-Cava
, and
E.
Andrés
, “
Multifidelity surrogate model for efficient aerodynamic predictions
,” in
8th European Congress on Computational Methods in Applied Sciences and Engineering
,
ECCOMAS Congress
(
2024
).
26.
R.
Castellanos
,
J.
Nieto-Centenero
,
A.
Gorgues
,
S.
Discetti
,
A.
Ianiro
, and
E.
Andrés
, “
Towards aerodynamic shape optimisation by manifold learning and neural networks
,” in
15th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, EUROGEN 2023
(
Institute of Research and Development for Computational Methods in Engineering Sciences
,
2023
).
27.
K.
Carlberg
,
C.
Farhat
,
J.
Cortial
, and
D.
Amsallem
, “
The gnat method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows
,”
J. Comput. Phys.
242
,
623
647
(
2013
).
28.
S.
Chaturantabut
and
D. C.
Sorensen
, “
Nonlinear model reduction via discrete empirical interpolation
,”
SIAM J. Sci. Comput.
32
,
2737
2764
(
2010
).
29.
P.
Liao
,
W.
Song
,
P.
Du
, and
H.
Zhao
, “
Multi-fidelity convolutional neural network surrogate model for aerodynamic optimization based on transfer learning
,”
Phys. Fluids
33
,
127121
(
2021
).
30.
C.
Duru
,
H.
Alemdar
, and
O. U.
Baran
, “
A deep learning approach for the transonic flow field predictions around airfoils
,”
Comput. Fluids
236
,
105312
(
2022
).
31.
Z.
Deng
,
J.
Wang
,
H.
Liu
,
H.
Xie
,
B.
Li
,
M.
Zhang
,
T.
Jia
,
Y.
Zhang
,
Z.
Wang
, and
B.
Dong
, “
Prediction of transonic flow over supercritical airfoils using geometric-encoding and deep-learning strategies
,”
Phys. Fluids
35
,
075146
(
2023
).
32.
Z.
Wang
,
X.
Liu
,
J.
Yu
,
H.
Wu
, and
H.
Lyu
, “
A general deep transfer learning framework for predicting the flow field of airfoils with small data
,”
Comput. Fluids
251
,
105738
(
2023
).
33.
D.
Hines
,
M.
Dias Ribeiro
, and
P.
Bekemeyer
, “
Physics-based regularization of neural networks for aerodynamic flow prediction
,” in
15th International Conference on Evolutionary and Deterministic Methods for Design, Optimization and Control, EUROGEN 2023
(
Institute of Research and Development for Computational Methods in Engineering Sciences
,
2023
), pp.
22
39
.
34.
D.
Hines
and
P.
Bekemeyer
, “
Graph neural networks for the prediction of aircraft surface pressure distributions
,”
Aerosp. Sci. Technol.
137
,
108268
(
2023
).
35.
J.
Wang
,
C.
He
,
R.
Li
,
H.
Chen
,
C.
Zhai
, and
M.
Zhang
, “
Flow field prediction of supercritical airfoils via variational autoencoder based deep learning framework
,”
Phys. Fluids
33
,
086108
(
2021
).
36.
Y.-E.
Kang
,
S.
Yang
, and
K.
Yee
, “
Physics-aware reduced-order modeling of transonic flow via β-variational autoencoder
,”
Phys. Fluids
34
,
076103
(
2022
).
37.
J.
Wang
,
H.
Xie
,
M.
Zhang
, and
H.
Xu
, “
Physics-assisted reduced-order modeling for identifying dominant features of transonic buffet
,”
Phys. Fluids
35
,
066124
(
2023
).
38.
A.
Beiki
and
R.
Kamali
, “
Novel attention-based convolutional autoencoder and ConvLSTM for reduced-order modeling in fluid mechanics with time derivative architecture
,”
Physica D
454
,
133857
(
2023
).
39.
D. P.
Kingma
and
M.
Welling
, “
Auto-encoding variational bayes
,” arXiv:1312.6114 (
2013
).
40.
H.
Eivazi
,
H.
Veisi
,
M. H.
Naderi
, and
V.
Esfahanian
, “
Deep neural networks for nonlinear model order reduction of unsteady flows
,”
Phys. Fluids
32
,
105104
(
2020
).
41.
B.
Zhang
, “
Nonlinear mode decomposition via physics-assimilated convolutional autoencoder for unsteady flows over an airfoil
,”
Phys. Fluids
35
,
095115
(
2023
).
42.
I.
Higgins
,
L.
Matthey
,
A.
Pal
,
C.
Burgess
,
X.
Glorot
,
M.
Botvinick
,
S.
Mohamed
, and
A.
Lerchner
, “
β-VAE: Learning basic visual concepts with a constrained variational framework
,” in
International Conference on Learning Representations
(
2017
).
43.
C. P.
Burgess
,
I.
Higgins
,
A.
Pal
,
L.
Matthey
,
N.
Watters
,
G.
Desjardins
, and
A.
Lerchner
, “
Understanding disentangling in β-VAE
,” arXiv:1804.03599 (
2018
).
44.
H.
Eivazi
,
S.
Le Clainche
,
S.
Hoyas
, and
R.
Vinuesa
, “
Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows
,”
Expert Syst. Appl.
202
,
117038
(
2022
).
45.
A.
Solera-Rico
,
C.
Sanmiguel Vila
,
M.
Gómez-López
,
Y.
Wang
,
A.
Almashjary
,
S.
Dawson
, and
R.
Vinuesa
, “
β-variational autoencoders and transformers for reduced-order modelling of fluid flows
,”
Nat. Commun.
15
,
1361
(
2024
).
46.
Y.
Wang
,
A.
Solera-Rico
,
C.
Sanmiguel Vila
, and
R.
Vinuesa
, “
Towards optimal β-variational autoencoders combined with transformers for reduced-order modelling of turbulent flows
,”
Int. J. Heat Fluid Flow
105
,
109254
(
2024
).
47.
D.
Massegur
and
A.
Da Ronch
, “
Graph convolutional multi-mesh autoencoder for steady transonic aircraft aerodynamics
,”
Mach. Learn.: Sci. Technol.
5
,
025006
(
2024
).
48.
G.
Immordino
,
A.
Vaiuso
,
A.
Da Ronch
, and
M.
Righi
, “
Predicting transonic flowfields in non-homogeneous unstructured grids using autoencoder graph convolutional networks
,” arXiv:2405.04396 (
2024
).
49.
J.
Kou
,
L.
Botero-Bolívar
,
R.
Ballano
,
O.
Marino
,
L.
de Santana
,
E.
Valero
, and
E.
Ferrer
, “
Aeroacoustic airfoil shape optimization enhanced by autoencoders
,”
Expert Syst. Appl.
217
,
119513
(
2023
).
50.
R.
Gupta
and
R.
Jaiman
, “
Three-dimensional deep learning-based reduced order model for unsteady flow dynamics with variable Reynolds number
,”
Phys. Fluids
34
,
033612
(
2022
).
51.
A.
Moni
,
W.
Yao
, and
H.
Malekmohamadi
, “
Data-driven reduced-order modeling for nonlinear aerodynamics using an autoencoder neural network
,”
Phys. Fluids
36
,
016105
(
2024
).
52.
J.
Pattinson
and
M.
Herring
, “
High fidelity simulation of the active winglet
,” in
International Forum on Aeroelasticity and Structural Dynamics (IFASD), Paper 15A
(
2013
).
53.
N.
Kroll
,
S.
Langer
, and
A.
Schwöppe
, “
The DLR flow solver tau - status and recent algorithmic developments
,” AIAA Paper No. 2014-0080,
2014
.
54.
S.
Kullback
and
R. A.
Leibler
, “
On information and sufficiency
,”
Ann. Math. Stat.
22
,
79
86
(
1951
).
55.
C. E.
Rasmussen
and
C. K. I.
Williams
,
Gaussian Processes for Machine Learning
(
The MIT Press
,
2005
).
56.
R. B.
Gramacy
,
Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences
(
Chapman and Hall/CRC
,
2020
).
57.
J.
Melo
, “
Gaussian processes for regression: A tutorial
,” Technical Report (University of Porto, 2012).
58.
S.
Lee
,
K.
Jang
,
S.
Lee
,
H.
Cho
, and
S.
Shin
, “
Parametric model order reduction by machine learning for fluid–structure interaction analysis
,”
Eng. Comput.
40
,
45
60
(
2023
).
59.
K.
Pearson
, “
LIII. On lines and planes of closest fit to systems of points in space
,”
London, Edinburgh, Dublin Philos. Mag. J. Sci.
2
,
559
572
(
1901
).
60.
S.
Cantero-Chinchilla
,
A.
Croxford
, and
P.
Wilcox
, “
A data-driven approach to suppress artefacts using PCA and autoencoders
,”
NDT E Int.
139
,
102904
(
2023
).
You do not currently have access to this content.