Efficient and effective modeling of complex systems, incorporating cloud physics and precipitation, is essential for accurate climate modeling and forecasting. However, simulating these systems is computationally demanding since microphysics has crucial contributions to the dynamics of moisture and precipitation. In this paper, appropriate stochastic models are developed for the phase-transition dynamics of water, focusing on the precipitating quasi-geostrophic (PQG) model as a prototype. By treating the moisture, phase transitions, and latent heat release as integral components of the system, the PQG model constitutes a set of partial differential equations (PDEs) that involve Heaviside nonlinearities due to phase changes of water. Despite systematically characterizing the precipitation physics, expensive iterative algorithms are needed to find a PDE inversion at each numerical integration time step. As a crucial step toward building an effective stochastic model, a computationally efficient Markov jump process is designed to randomly simulate transitions between saturated and unsaturated states that avoids using the expensive iterative solver. The transition rates, which are deterministic, are derived from the physical fields, guaranteeing physical and statistical consistency with nature. Furthermore, to maintain the consistent spatial pattern of precipitation, the stochastic model incorporates an adaptive parameterization that automatically adjusts the transitions based on spatial information. Numerical tests show the stochastic model retains critical properties of the original PQG system while significantly reducing computational demands. It accurately captures observed precipitation patterns, including the spatial distribution and temporal variability of rainfall, alongside reproducing essential dynamic features such as potential vorticity fields and zonal mean flows.

1.
A. C.
Winters
and
J. E.
Martin
, “
The role of a polar/subtropical jet superposition in the May 2010 Nashville flood
,”
Weather Forecast.
29
,
954
974
(
2014
).
2.
R. A.
Houze
,
L. A.
McMurdie
,
K. L.
Rasmussen
,
A.
Kumar
, and
M. M.
Chaplin
, “
Multiscale aspects of the storm producing the June 2013 flooding in Uttarakhand, India
,”
Mon. Weather Rev.
145
,
4447
4466
(
2017
).
3.
T. P.
Sapsis
, “
Statistics of extreme events in fluid flows and waves
,”
Annu. Rev. Fluid Mech.
53
,
85
111
(
2021
).
4.
F.
Vitart
and
A. W.
Robertson
, “
The sub-seasonal to seasonal prediction project (S2S) and the prediction of extreme events
,”
npj Clim. Atmos. Sci.
1
,
3
(
2018
).
5.
A.
Santoso
,
M. J.
Mcphaden
, and
W.
Cai
, “
The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño
,”
Rev. Geophys.
55
,
1079
1129
, https://doi.org/10.1002/2017RG000560 (
2017
).
6.
M. D.
Chekroun
,
H.
Liu
,
K.
Srinivasan
, and
J. C.
McWilliams
, “
The high-frequency and rare events barriers to neural closures of atmospheric dynamics
,”
J. Phys.
5
,
025004
(
2024
).
7.
V.
Lucarini
,
D.
Faranda
,
J. M. M.
de Freitas
,
M.
Holland
,
T.
Kuna
,
M.
Nicol
,
M.
Todd
,
S.
Vaienti
et al,
Extremes and Recurrence in Dynamical Systems
(
John Wiley & Sons
,
2016
).
8.
M.
Newman
,
G. N.
Kiladis
,
K. M.
Weickmann
,
F. M.
Ralph
, and
P. D.
Sardeshmukh
, “
Relative contributions of synoptic and low-frequency eddies to time-mean atmospheric moisture transport, including the role of atmospheric rivers
,”
J. Clim.
25
,
7341
7361
(
2012
).
9.
D. A.
Lavers
,
F. M.
Ralph
,
D. E.
Waliser
,
A.
Gershunov
, and
M. D.
Dettinger
, “
Climate change intensification of horizontal water vapor transport in CMIP5
,”
Geophys. Res. Lett.
42
,
5617
5625
, https://doi.org/10.1002/2015GL064672 (
2015
).
10.
A. J.
Majda
, “
Challenges in climate science and contemporary applied mathematics
,”
Commun. Pure Appl. Math.
65
,
920
948
(
2012
).
11.
A. J.
Majda
and
N.
Chen
, “
Model error, information barriers, state estimation and prediction in complex multiscale systems
,”
Entropy
20
,
644
(
2018
).
12.
T. N.
Palmer
, “
A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parametrization in weather and climate prediction models
,”
Q. J. R. Meteorol. Soc.
127
,
279
304
(
2001
).
13.
A. J.
Majda
,
C.
Franzke
, and
B.
Khouider
, “
An applied mathematics perspective on stochastic modelling for climate
,”
Philos. Trans. R. Soc. A
366
,
2427
2453
(
2008
).
14.
P. N.
Edwards
, “
History of climate modeling
,”
Wiley Interdiscip. Rev.
2
,
128
139
(
2011
).
15.
C.
Franzke
,
A. J.
Majda
, and
E.
Vanden-Eijnden
, “
Low-order stochastic mode reduction for a realistic barotropic model climate
,”
J. Atmos. Sci.
62
,
1722
1745
(
2005
).
16.
C.
Mou
,
N.
Chen
, and
T.
Iliescu
, “
An efficient data-driven multiscale stochastic reduced order modeling framework for complex systems
,”
J. Comput. Phys.
493
,
112450
(
2023
).
17.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden Eijnden
, “
A mathematical framework for stochastic climate models
,”
Commun. Pure Appl. Math.
54
,
891
974
(
2001
).
18.
C. L. E.
Franzke
,
T. J.
O'Kane
,
J.
Berner
,
P. D.
Williams
, and
V.
Lucarini
, “
Stochastic climate theory and modeling
,”
Wiley Interdiscip. Rev.
6
,
63
78
(
2015
).
19.
P.
Imkeller
and
J.-S. V.
Storch
,
Stochastic Climate Models
(
Springer Science & Business Media
,
2001
), Vol.
49
.
20.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden Eijnden
, “
Models for stochastic climate prediction
,”
Proc. Natl. Acad. Sci. U. S. A.
96
,
14687
14691
(
1999
).
21.
A. J.
Majda
,
I.
Timofeyev
, and
E.
Vanden-Eijnden
, “
Systematic strategies for stochastic mode reduction in climate
,”
J. Atmos. Sci.
60
,
1705
1722
(
2003
).
22.
N.
Chen
and
A. J.
Majda
, “
Conditional Gaussian systems for multiscale nonlinear stochastic systems: Prediction, state estimation and uncertainty quantification
,”
Entropy
20
,
509
(
2018
).
23.
T. N.
Palmer
, “
Stochastic weather and climate models
,”
Nat. Rev. Phys.
1
,
463
471
(
2019
).
24.
I.
Horenko
,
R.
Klein
,
S.
Dolaptchiev
, and
C.
Schütte
, “
Automated generation of reduced stochastic weather models I: Simultaneous dimension and model reduction for time series analysis
,”
Multiscale Model. Simul.
6
,
1125
1145
(
2008
).
25.
A. J.
Majda
,
C.
Franzke
, and
D.
Crommelin
, “
Normal forms for reduced stochastic climate models
,”
Proc. Natl. Acad. Sci. U. S. A.
106
,
3649
3653
(
2009
).
26.
L. M.
Smith
and
S. N.
Stechmann
, “
Precipitating quasigeostrophic equations and potential vorticity inversion with phase changes
,”
J. Atmos. Sci.
74
,
3285
3303
(
2017
).
27.
K.
Law
,
A.
Stuart
, and
K.
Zygalakis
,
Data Assimilation
(
Springer
,
Cham, Switzerland
,
2015
), Vol.
214
, p.
52
.
28.
M.
Asch
,
M.
Bocquet
, and
M.
Nodet
,
Data Assimilation: Methods, Algorithms, and Applications
(
SIAM
,
2016
).
29.
J. G.
Charney
, “
On the scale of atmospheric motions
,” in
The Atmosphere—A Challenge: The Science of Jule Gregory Charney
(
Springer
,
1948
), pp.
251
265
.
30.
A.
Majda
,
Introduction to PDEs and Waves for the Atmosphere and Ocean
(
American Mathematical Society
,
2003
), Vol.
9
.
31.
G. K.
Vallis
,
Atmospheric and Oceanic Fluid Dynamics
(
Cambridge University Press
,
2017
).
32.
K. A.
Emanuel
,
M.
Fantini
, and
A. J.
Thorpe
, “
Baroclinic instability in an environment of small stability to slantwise moist convection
,”
J. Atmos. Sci.
44
,
1559
1573
(
1987
).
33.
G.
Lapeyre
and
I. M.
Held
, “
The role of moisture in the dynamics and energetics of turbulent baroclinic eddies
,”
J. Atmos. Sci.
61
,
1693
1710
(
2004
).
34.
H.
Ertel
, “
Ein neuer hydrodynamischer Erhaltungssatz
,”
Naturwiss.
30
,
543
544
(
1942
).
35.
B. J.
Hoskins
,
M. E.
McIntyre
, and
A. W.
Robertson
, “
On the use and significance of isentropic potential vorticity maps
,”
Q. J. R. Meteorol. Soc.
111
,
877
946
(
1985
).
36.
T. K.
Edwards
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Spectra of atmospheric water in precipitating quasi-geostrophic turbulence
,”
Geophys. Astrophys. Fluid Dyn.
114
,
715
741
(
2020
).
37.
R.
Hu
,
T. K.
Edwards
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Initial investigations of precipitating quasi-geostrophic turbulence with phase changes
,”
Res. Math. Sci.
8
(
1
),
6
(
2021
).
38.
C.
Mou
,
L. M.
Smith
, and
N.
Chen
, “
Combining stochastic parameterized reduced-order models with machine learning for data assimilation and uncertainty quantification with partial observations
,”
J. Adv. Model. Earth Syst.
15
,
e2022MS003597
(
2023
).
39.
C. W.
Gardiner
,
Handbook of Stochastic Methods for Physics, Chemistry and The Natural Sciences
, Springer Series in Synergetics Vol.
13
(
Springer
,
2004
).
40.
M. A.
Katsoulakis
,
A. J.
Majda
, and
D. G.
Vlachos
, “
Coarse-grained stochastic processes for microscopic lattice systems
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
782
787
(
2003
).
41.
B.
Khouider
,
J.
Biello
, and
A. J.
Majda
, “
A stochastic multicloud model for tropical convection
,”
Commun. Math. Sci.
8
,
187
216
(
2010
).
42.
R.
Salmon
, “
Baroclinic instability and geostrophic turbulence
,”
Geophys. Astrophys. Fluid Dyn.
15
,
167
211
(
1980
).
43.
D.
Qi
and
A. J.
Majda
, “
Low-dimensional reduced-order models for statistical response and uncertainty quantification: Two-layer baroclinic turbulence
,”
J. Atmos. Sci.
73
,
4609
4639
(
2016
).
44.
G.
Hernandez-Duenas
,
A. J.
Majda
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Minimal models for precipitating turbulent convection
,”
J. Fluid Mech.
717
,
576
611
(
2013
).
45.
Y.
Zhang
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Effects of clouds and phase changes on fast-wave averaging: A numerical assessment
,”
J. Fluid Mech.
920
,
A49
(
2021
).
46.
A.
Remond-Tiedrez
,
L. M.
Smith
, and
S. N.
Stechmann
, “
A nonlinear elliptic PDE from atmospheric science: Well-posedness and regularity at cloud edge
,”
J. Math. Fluid Mech.
26
,
30
(
2024
).
47.
A. N.
Wetzel
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Moisture transport due to baroclinic waves: Linear analysis of precipitating quasi-geostrophic dynamics
,”
Math. Clim. Weather Forecast.
3
,
28
50
(
2017
).
48.
A. N.
Wetzel
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Discontinuous fronts as exact solutions to precipitating quasi-geostrophic equations
,”
SIAM J. Appl. Math.
79
,
1341
1366
(
2019
).
49.
T. K.
Edwards
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Atmospheric rivers and water fluxes in precipitating quasi-geostrophic turbulence
,”
Q. J. R. Meteorol. Soc.
146
,
1960
1975
(
2020
).
50.
A. M.
Treguier
and
B. L.
Hua
, “
Oceanic quasi-geostrophic turbulence forced by stochastic wind fluctuations
,”
J. Phys. Oceanogr.
17
,
397
411
(
1987
).
51.
O.
Martius
,
E.
Zenklusen
,
C.
Schwierz
, and
H. C.
Davies
, “
Episodes of alpine heavy precipitation with an overlying elongated stratospheric intrusion: A climatology
,”
Int. J. Climatol.
26
,
1149
1164
(
2006
).
52.
N. M.
Roberts
,
The Relationship Between Water Vapour Imagery and Thunderstorms
(
Joint Centre for Mesoscale Meteorology
2000
).
53.
J. M.
Chagnon
and
S. L.
Gray
, “
Horizontal potential vorticity dipoles on the convective storm scale
,”
Q. J. R. Meteorol. Soc.
135
,
1392
1408
(
2009
).
54.
W.
Schubert
,
E.
Ruprecht
,
R.
Hertenstein
,
R. N.
Ferreira
,
R.
Taft
,
C.
Rozoff
,
P.
Ciesielski
, and
H.-C.
Kuo
, “
English translations of twenty-one of Ertel's papers on geophysical fluid dynamics
,”
Meteorol. Z.
13
,
527
(
2004
).
55.
J.
Babaud
,
A. P.
Witkin
,
M.
Baudin
, and
R. O.
Duda
, “
Uniqueness of the gaussian kernel for scale-space filtering
,”
IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-8
,
26
33
(
1986
).
56.
M. P.
Wand
and
M. C.
Jones
,
Kernel Smoothing
(
CRC Press
,
1994
).
57.
A.
Wilson
and
R.
Adams
, “
Gaussian process kernels for pattern discovery and extrapolation
,” in
International Conference on Machine Learning
(
PMLR
,
2013
), pp.
1067
1075
.
58.
P. J.
Burt
, “
Fast filter transform for image processing
,”
Comput. Graphics Image Process.
16
,
20
51
(
1981
).
59.
Y.
Zhang
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Fast-wave averaging with phase changes: Asymptotics and application to moist atmospheric dynamics
,”
J. Nonlinear Sci.
31
,
38
(
2021
).
60.
Y.
Zhang
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Convergence to precipitating quasi-geostrophic equations with phase changes: Asymptotics and numerical assessment
,”
Philos. Trans. R. Soc., A
380
,
20210030
(
2022
).
61.
G.
Hernandez-Duenas
,
L. M.
Smith
, and
S. N.
Stechmann
, “
Investigation of Boussinesq dynamics using intermediate models based on wave–vortical interactions
,”
J. Fluid Mech.
747
,
247
287
(
2014
).
62.
Q.
Deng
,
L.
Smith
, and
A.
Majda
, “
Tropical cyclogenesis and vertical shear in a moist Boussinesq model
,”
J. Fluid Mech.
706
,
384
412
(
2012
).
63.
M. K.
Yau
and
R. R.
Rogers
,
A Short Course in Cloud Physics
(
Elsevier
,
1996
).
64.
Y.
Liu
,
M.-K.
Yau
,
S.-I.
Shima
,
C.
Lu
, and
S.
Chen
, “
Parameterization and explicit modeling of cloud microphysics: Approaches, challenges, and future directions
,”
Adv. Atmos. Sci.
40
,
747
790
(
2023
).
65.
N.
Chen
,
A. J.
Majda
, and
D.
Giannakis
, “
Predicting the cloud patterns of the Madden-Julian Oscillation through a low-order nonlinear stochastic model
,”
Geophys. Res. Lett.
41
,
5612
5619
, https://doi.org/10.1002/2014GL060876 (
2014
).
66.
N.
Chen
,
Stochastic Methods for Modeling and Predicting Complex Dynamical Systems: Uncertainty Quantification, State Estimation, and Reduced-Order Models
(
Springer Nature
,
2023
).
67.
P.
Lopez
, “
Implementation and validation of a new prognostic large-scale cloud and precipitation scheme for climate and data-assimilation purposes
,”
Q. J. R. Meteorol. Soc.
128
,
229
257
(
2002
).
68.
J.
Gottschalck
,
J.
Meng
,
M.
Rodell
, and
P.
Houser
, “
Analysis of multiple precipitation products and preliminary assessment of their impact on global land data assimilation system land surface states
,”
J. Hydrometeorol.
6
,
573
598
(
2005
).
You do not currently have access to this content.