A physics-informed machine learning model is proposed in this paper to reconstruct the high-fidelity three-dimensional boundary layer wind field of tropical cyclones. The governing equations of the wind field, which incorporate a spatially varying eddy diffusivity coefficient, are derived and embedded within the model's loss function. This integration allows the model to learn the underlying physics of the boundary layer wind field. The model is applied to reconstruct two tropical cyclone events in different oceanic basins. A wide range of observational data from satellite, dropsonde, and Doppler radar records are assimilated into the model. The model's performance is evaluated by comparing its results with observations and a classic linear model. The findings demonstrate that the model's accuracy improves with an increased amount of real data and the introduction of spatially varying eddy diffusivity. Furthermore, the proposed model does not require strict boundary conditions to reconstruct the wind field, offering greater flexibility compared to traditional numerical models. With the assimilation of observational data, the proposed model accurately reconstructs the horizontal, radial, and vertical distributions of the wind field. Compared with the linear model, the proposed model more effectively captures the nonlinearities and asymmetries of the wind field, thus presents more realistic outcomes.

1.
Cavallo
,
S. M.
,
Torn
,
R. D.
,
Snyder
,
C.
,
Davis
,
C.
,
Wang
,
W.
, and
Done
,
J.
, “
Evaluation of the advanced hurricane WRF data assimilation system for the 2009 Atlantic hurricane season
,”
Mon. Weather Rev.
141
(
2
),
523
541
(
2013
).
2.
Chan
,
K. T. F.
and
Chan
,
J. C. L.
, “
Sensitivity of the simulation of tropical cyclone size to microphysics schemes
,”
Adv. Atmos. Sci.
33
(
9
),
1024
1035
(
2016
).
3.
Chan
,
P. W.
,
Wu
,
N. G.
,
Zhang
,
C. Z.
,
Deng
,
W. J.
, and
Hon
,
K. K.
, “
The first complete dropsonde observation of a tropical cyclone over the South China Sea by the Hong Kong Observatory
,”
Weather
73
(
7
),
227
234
(
2018
).
4.
Chen
,
S. H.
and
Sun
,
W. Y.
, “
A one-dimensional time dependent cloud model
,”
J. Meteorolog. Soc. Jpn.
80
(
1
),
99
118
(
2002
).
5.
Cuomo
,
S.
,
Di Cola
,
V. S.
,
Giampaolo
,
F.
,
Rozza
,
G.
,
Raissi
,
M.
, and
Piccialli
,
F.
, “
Scientific machine learning through physics–informed neural networks: Where we are and what's next
,”
J. Sci. Comput.
92
(
3
),
88
(
2022
).
6.
De
,
A. K.
and
Sarkar
,
S.
, “
Evolution of wake structure with aspect ratio behind a thin pitching panel
,”
J. Fluids Struct.
124
,
104025
(
2024a
).
7.
De
,
A. K.
and
Sarkar
,
S.
, “
Vortex-shedding modes of a streamwise and transversely rotating sphere undergoing vortex-induced vibrations
,”
Phys. Fluids
36
(
6
),
061705
(
2024b
).
8.
Dudhia
,
J.
, “
Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model
,”
J. Atmos. Sci.
46
(
20
),
3077
3107
(
1989
).
9.
Emanuel
,
K. A.
, “
The maximum intensity of hurricanes
,”
J. Atmos. Sci.
45
(
7
),
1143
1155
(
1988
).
10.
Eusebi
,
R.
,
Vecchi
,
G. A.
,
Lai
,
C.-Y.
, and
Tong
,
M.
, “
Realistic tropical cyclone wind and pressure fields can be reconstructed from sparse data using deep learning
,”
Commun. Earth Environ.
5
(
1
),
8
(
2024
).
11.
Fang
,
G.
,
Zhao
,
L.
,
Cao
,
S.
,
Ge
,
Y.
, and
Pang
,
W.
, “
A novel analytical model for wind field simulation under typhoon boundary layer considering multi-field correlation and height-dependency
,”
J. Wind Eng. Ind. Aerodyn.
175
,
77
89
(
2018
).
12.
Fang
,
P.
,
Ye
,
G.
, and
Yu
,
H.
, “
A parametric wind field model and its application in simulating historical typhoons in the western North Pacific Ocean
,”
J. Wind Eng. Ind. Aerodyn.
199
,
104131
(
2020
).
13.
Franklin
,
J. L.
,
Black
,
M. L.
, and
Valde
,
K.
, “
GPS dropwindsonde wind profiles in hurricanes and their operational implications
,”
Weather Forecasting
18
(
1
),
32
44
(
2003
).
14.
Glorot
,
X.
and
Bengio
,
Y.
, “
Understanding the difficulty of training deep feedforward neural networks
,” in
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics
(
PMLR
,
2010
), pp.
249
256
.https://proceedings.mlr.press/v9/glorot10a.html
15.
He
,
J. Y.
,
Chan
,
P. W.
,
Li
,
Q. S.
,
Li
,
L.
,
Zhang
,
L.
, and
Yang
,
H. L.
, “
Observation of vertical eddy diffusivity and mixing length during landfalling Super Typhoons
,”
J. Wind Eng. Ind. Aerodyn.
219
,
104816
(
2021
).
16.
He
,
Y. C.
,
He
,
J. Y.
,
Chen
,
W. C.
,
Chan
,
P. W.
,
Fu
,
J. Y.
, and
Li
,
Q.
, “
Insights from Super Typhoon Mangkhut (1822) for wind engineering practices
,”
J. Wind Eng. Ind. Aerodyn.
203
,
104238
(
2020
).
17.
Holbach
,
H. M.
,
Bousquet
,
O.
,
Bucci
,
L.
,
Chang
,
P.
,
Cione
,
J.
,
Ditchek
,
S.
,
Doyle
,
J.
,
Duvel
,
J.-P.
,
Elston
,
J.
,
Goni
,
G.
,
Hon
,
K. K.
,
Ito
,
K.
,
Jelenak
,
Z.
,
Lei
,
X.
,
Lumpkin
,
R.
,
McMahon
,
C. R.
,
Reason
,
C.
,
Sanabia
,
E.
,
Shay
,
L. K.
, and
Zhang
,
J. A.
, “
Recent advancements in aircraft and in situ observations of tropical cyclones
,”
Trop. Cyclone Res. Rev.
12
(
2
),
81
99
(
2023
).
18.
Holland
,
G. J.
, “
An analytic model of the wind and pressure profiles in hurricanes
,”
Mon. Weather Rev.
108
(
8
),
1212
1218
(
1980
).
19.
Holton
,
J. R.
and
Hakim
,
G. J.
,
An Introduction to Dynamic Meteorology
(
Elsevier
,
2013
).
20.
Hong
,
S. Y.
and
Lim
,
J. O. J.
, “
The WRF single-moment 6-class microphysics scheme (WSM6)
,”
J. Korean Meteorolog. Soc.
42
(
2
),
129
151
(
2006
).
21.
Hong
,
S. Y.
,
Noh
,
Y.
, and
Dudhia
,
J.
, “
A new vertical diffusion package with an explicit treatment of entrainment processes
,”
Mon. Weather Rev.
134
(
9
),
2318
2341
(
2006
).
22.
Hong
,
X.
,
Hong
,
H. P.
, and
Li
,
J.
, “
Solution and validation of a three dimensional tropical cyclone boundary layer wind field model
,”
J. Wind Eng. Ind. Aerodyn.
193
,
103973
(
2019
).
23.
Iacono
,
M. J.
,
Delamere
,
J. S.
,
Mlawer
,
E. J.
,
Shephard
,
M. W.
,
Clough
,
S. A.
, and
Collins
,
W. D.
, “
Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models
,”
J. Geophys. Res.
113
(
D13
),
2008JD009944
, https://doi.org/10.1029/2008JD009944 (
2008
).
24.
Islam
,
T.
,
Srivastava
,
P. K.
,
Rico-Ramirez
,
M. A.
,
Dai
,
Q.
,
Gupta
,
M.
, and
Singh
,
S. K.
, “
Tracking a tropical cyclone through WRF–ARW simulation and sensitivity of model physics
,”
Nat. Hazards
76
(
3
),
1473
1495
(
2015
).
25.
Kain
,
J. S.
, “
The Kain–Fritsch convective parameterization: An update
,”
J. Appl. Meteorol.
43
(
1
),
170
181
(
2004
).
26.
Kepert
,
J.
, “
The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory
,”
J. Atmos. Sci.
58
(
17
),
2469
2484
(
2001
).
27.
Kepert
,
J. D.
, “
Slab- and height-resolving models of the tropical cyclone boundary layer. Part I: Comparing the simulations
,”
Q. J. R. Meteorolog. Soc.
136
(
652
),
1686
1699
(
2010
).
28.
Kepert
,
J. D.
, “
Choosing a boundary layer parameterization for tropical cyclone modeling
,”
Mon. Weather Rev.
140
(
5
),
1427
1445
(
2012
).
29.
Kepert
,
J.
and
Wang
,
Y.
, “
The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement
,”
J. Atmos. Sci.
58
(
17
),
2485
2501
(
2001
).
30.
Kingma
,
D. P.
and
Ba
,
J.
, “
Adam: A method for stochastic optimization
,” arXiv:1412.6980 (
2014
).
31.
Knapp
,
K. R.
,
Kruk
,
M. C.
,
Levinson
,
D. H.
,
Diamond
,
H. J.
, and
Neumann
,
C. J.
, “
The international best track archive for climate stewardship (IBTrACS): Unifying tropical cyclone data
,”
Bull. Am. Meteorol. Soc.
91
(
3
),
363
376
(
2010
).
32.
Li
,
X.
,
Hurricane Monitoring with Spaceborne Synthetic Aperture Radar
(
Springer
,
Singapore
,
2017
).
33.
Liu
,
D. C.
and
Nocedal
,
J.
, “
On the limited memory BFGS method for large scale optimization
,”
Math. Program.
45
(
1–3
),
503
528
(
1989
).
34.
Loh
,
W. L.
, “
On Latin hypercube sampling
,”
Ann. Stat.
24
(
5
),
2058
2080
(
1996
).
35.
Lu
,
X.
,
Yu
,
H.
,
Ying
,
M.
,
Zhao
,
B.
,
Zhang
,
S.
,
Lin
,
L.
,
Bai
,
L.
, and
Wan
,
R.
, “
Western North Pacific tropical cyclone database created by the China Meteorological Administration
,”
Adv. Atmos. Sci.
38
(
4
),
690
699
(
2021
).
36.
Meng
,
Y.
,
Matsui
,
M.
, and
Hibi
,
K.
, “
An analytical model for simulation of the wind field in a typhoon boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
56
(
2–3
),
291
310
(
1995
).
37.
Meng
,
Y.
,
Matsui
,
M.
, and
Hibi
,
K.
, “
A numerical study of the wind field in a typhoon boundary layer
,”
J. Wind Eng. Ind. Aerodyn.
67–68
,
437
448
(
1997
).
38.
Miao
,
Z.
and
Chen
,
Y.
, “
VC-PINN: Variable coefficient physics-informed neural network for forward and inverse problems of PDEs with variable coefficient
,”
Physica D
456
,
133945
(
2023
).
39.
Namin
,
A. H.
,
Leboeuf
,
K.
,
Muscedere
,
R.
,
Wu
,
H.
, and
Ahmadi
,
M.
, “
Efficient hardware implementation of the hyperbolic tangent sigmoid function
,” in
Proceedings of the 2009 IEEE International Symposium on Circuits and Systems
(
IEEE
,
2009
), pp.
2117
2120
.
40.
Nguyen
,
T. C.
and
Huang
,
C. Y.
, “
A comparative modeling study of supertyphoons Mangkhut and Yutu (2018) past the Philippines with ocean-coupled HWRF
,”
Atmosphere
12
(
8
),
1055
(
2021
).
41.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
, “
Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
,”
J. Comput. Phys.
378
,
686
707
(
2019
).
42.
Rappaport
,
E. N.
,
Franklin
,
J. L.
,
Avila
,
L. A.
,
Baig
,
S. R.
,
Beven
,
J. L.
,
Blake
,
E. S.
,
Burr
,
C. A.
,
Jiing
,
J.-G.
,
Juckins
,
C. A.
,
Knabb
,
R. D.
,
Landsea
,
C. W.
,
Mainelli
,
M.
,
Mayfield
,
M.
,
McAdie
,
C. J.
,
Pasch
,
R. J.
,
Sisko
,
C.
,
Stewart
,
S. R.
, and
Tribble
,
A. N.
, “
Advances and challenges at the National Hurricane Center
,”
Weather Forecasting
24
(
2
),
395
419
(
2009
).
43.
Reasor
,
P. D.
,
Eastin
,
M. D.
, and
Gamache
,
J. F.
, “
Rapidly intensifying hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution
,”
Mon. Weather Rev.
137
(
2
),
603
631
(
2009
).
44.
Ricciardulli
,
L.
,
Howell
,
B.
,
Jackson
,
C. R.
,
Hawkins
,
J.
,
Courtney
,
J.
,
Stoffelen
,
A.
,
Langlade
,
S.
,
Fogarty
,
C.
,
Mouche
,
A.
,
Blackwell
,
W.
,
Meissner
,
T.
,
Heming
,
J.
,
Candy
,
B.
,
McNally
,
T.
,
Kazumori
,
M.
,
Khadke
,
C.
, and
Glaiza Escullar
,
M. A.
, “
Remote sensing and analysis of tropical cyclones: Current and emerging satellite sensors
,”
Trop. Cyclone Res. Rev.
12
(
4
),
267
293
(
2023
).
45.
Rogers
,
R.
,
Reasor
,
P.
, and
Lorsolo
,
S.
, “
Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones
,”
Mon. Weather Rev.
141
(
9
),
2970
2991
(
2013
).
46.
Sarkar
,
S.
and
De
,
A. K.
, “
Vortex-shedding modes of a pair of side-by-side thin pitching plates
,”
Phys. Fluids
36
(
8
),
081706
(
2024
).
47.
Schwendike
,
J.
and
Kepert
,
J. D.
, “
The boundary layer winds in hurricanes Danielle (1998) and Isabel (2003)
,”
Mon. Weather Rev.
136
(
8
),
3168
3192
(
2008
).
48.
Shapiro
,
L. J.
, “
The asymmetric boundary layer flow under a translating hurricane
,”
J. Atmos. Sci.
40
(
8
),
1984
1998
(
1983
).
49.
Skamarock
,
W. C.
,
Klemp
,
J. B.
,
Dudhia
,
J.
,
Gill
,
D. O.
,
Liu
,
Z.
,
Berner
,
J.
,
Wang
,
W.
,
Powers
,
J. G.
,
Duda
,
M. G.
,
Barker
,
D. M.
, and
Huang
,
X.-Y.
, “
A description of the advanced research WRF model Version 4
,”
Technical Report UCAR/NCAR
,
2019
.
50.
Smagorinsky
,
J.
, “
General circulation experiments with the primitive equations: I. The basic experiment
,”
Mon. Weather Rev.
91
(
3
),
99
164
(
1963
).
51.
Smith
,
R. K.
, “
A simple model of the hurricane boundary layer
,”
Q. J. R. Meteorolog. Soc.
129
(
589
),
1007
1027
(
2003
).
52.
Snaiki
,
R.
and
Wu
,
T.
, “
Knowledge-enhanced deep learning for simulation of tropical cyclone boundary-layer winds
,”
J. Wind Eng. Ind. Aerodyn.
194
,
103983
(
2019
).
53.
Snaiki
,
R.
and
Wu
,
T.
, “
An analytical model for rapid estimation of hurricane supergradient winds
,”
J. Wind Eng. Ind. Aerodyn.
201
,
104175
(
2020
).
54.
Thompson
,
E. F.
and
Cardone
,
V. J.
, “
Practical modeling of hurricane surface wind fields
,”
J. Waterw. Port Coastal Ocean Eng.
122
(
4
),
195
205
(
1996
).
55.
Tian
,
R.
,
Kou
,
P.
,
Zhang
,
Y.
,
Mei
,
M.
,
Zhang
,
Z.
, and
Liang
,
D.
, “
Residual-connected physics-informed neural network for anti-noise wind field reconstruction
,”
Appl. Energy
357
,
122439
(
2024
).
56.
Troen
,
I. B.
and
Mahrt
,
L.
, “
A simple model of the atmospheric boundary layer; sensitivity to surface evaporation
,”
Boundary Layer Meteorol.
37
(
1–2
),
129
148
(
1986
).
57.
Vickers
,
D.
,
Mahrt
,
L.
, and
Andreas
,
E. L.
, “
Formulation of the sea surface friction velocity in terms of the mean wind and bulk stability
,”
J. Appl. Meteorol. Climatol.
54
(
3
),
691
703
(
2015
).
58.
Vickery
,
P. J.
,
Skerlj
,
P. F.
,
Steckley
,
A. C.
, and
Twisdale
,
L. A.
, “
Hurricane wind field model for use in hurricane simulations
,”
J. Struct. Eng.
126
(
10
),
1203
1221
(
2000
).
59.
Vickery
,
P. J.
and
Twisdale
,
L. A.
, “
Wind-field and filling models for hurricane wind-speed predictions
,”
J. Struct. Eng.
121
(
11
),
1700
1709
(
1995
).
60.
Wang
,
Y.
and
Wu
,
C. C.
, “
Current understanding of tropical cyclone structure and intensity changes? A review
,”
Meteorol. Atmos. Phys.
87
(
4
),
257
278
(
2004
).
61.
Xu
,
H.
,
Zhang
,
W.
, and
Wang
,
Y.
, “
Explore missing flow dynamics by physics-informed deep learning: The parameterized governing systems
,”
Phys. Fluids
33
(
9
),
095116
(
2021
).
62.
Yang
,
J.
,
Chen
,
Y.
,
Tang
,
Y.
,
Yan
,
G.
, and
Duan
,
Z.
, “
A high-fidelity parametric model for tropical cyclone boundary layer wind field by considering effects of land cover and terrain
,”
Atmos. Res.
260
,
105701
(
2021
).
63.
Yang
,
J.
,
Chen
,
Y.
,
Zhou
,
H.
, and
Duan
,
Z.
, “
A height-resolving tropical cyclone boundary layer model with vertical advection process
,”
Nat. Hazards
107
(
1
),
723
749
(
2021
).
64.
Ying
,
M.
,
Zhang
,
W.
,
Yu
,
H.
,
Lu
,
X.
,
Feng
,
J.
,
Fan
,
Y.
,
Zhu
,
Y.
, and
Chen
,
D.
, “
An overview of the China Meteorological Administration tropical cyclone database
,”
J. Atmos. Oceanic Technol.
31
(
2
),
287
301
(
2014
).
65.
Zhang
,
C.
,
Chan
,
P.
,
Yerong
,
F.
,
Yanyan
,
H.
, and
Guangfeng
,
D.
, “
Impact of dropsonde data on two tropical cyclone forecasts in the South China Sea
,”
Meteorol. Atmos. Phys.
135
(
3
),
23
(
2023
).
66.
Zhang
,
C.
and
Wang
,
Y.
, “
Projected future changes of tropical cyclone activity over the Western North and South Pacific in a 20-km-mesh regional climate model
,”
J. Clim.
30
(
15
),
5923
5941
(
2017
).
67.
Zhang
,
F.
,
Pu
,
Z.
, and
Wang
,
C.
, “
Effects of boundary layer vertical mixing on the evolution of hurricanes over land
,”
Mon. Weather Rev.
145
(
6
),
2343
2361
(
2017
).
68.
Zhang
,
H.
,
Wang
,
H.
,
Xu
,
Z.
,
Liu
,
Z.
, and
Khoo
,
B. C.
, “
A physics-informed neural network-based approach to reconstruct the tornado vortices from limited observed data
,”
J. Wind Eng. Ind. Aerodyn.
241
,
105534
(
2023
).
69.
Zhang
,
J.
and
Zhao
,
X.
, “
Spatiotemporal wind field prediction based on physics-informed deep learning and LIDAR measurements
,”
Appl. Energy
288
,
116641
(
2021
).
You do not currently have access to this content.