This paper examines the impact of scramjet isolator shape transition on hypersonic internal waverider (IWR) intake. The IWR intake is designed using the osculating axisymmetric flows and streamline-tracing methods. The new Internal Conical Flow “M” basic flowfield is utilized to provide the flow information for the design method. The intake is equipped with three isolators: one with a constant cross section and two with variable cross sections with circular and rectangular exits. The entrance shape and area of the three isolators are fixed to the intake throat shape and area. The exit area of the three isolators is maintained as the entrance one. Numerical computations of three-dimensional configurations reveal that the isolators with variable cross section shapes demonstrate a higher uniformity index than those with constant cross section shape. Thus, the isolator shape transition has decreased the flow distortion of the hypersonic IWR intake system. The three isolators exhibit varied wall pressure distribution depending on the isolator cross section shape, and the total pressure recovery ratios at the three isolators' exit planes are similar. The wall pressure distributions and key performance parameters at the intake throat section, including total pressure recovery, compression ratio, and Mach number, remained consistent across the first part of the intakes. Therefore, changing the cross section shape of the isolator while keeping the area constant could enhance the flow uniformity of compressed air without negatively impacting the intake system's performance. This allows a separate shape selection of the IWR intake throat and the scramjet combustor entrance to fulfill their special requirements.

1.
D.
Le
,
C.
Goyne
, and
R.
Krauss
, “
Shock train leading-edge detection in a dual-mode scramjet
,”
J. Propul. Power
24
(
5
),
1035
1041
(
2008
).
2.
S.-K.
Im
and
H.
Do
, “
Unstart phenomena induced by flow choking in scramjet inlet-isolators
,”
Prog. Aerosp. Sci.
97
,
1
21
(
2018
).
3.
E.
Curran
and
S.
Murthy
,
Progress in Astronautics and Aeronautics
(
AIAA
,
2000
).
4.
D. M. V.
Wie
,
Scramjet Inlets
(
AIAA
,
2000
), pp.
447
511
.
5.
F.
Billing
, “
Inlet-combustor interface problems in scramjet engines
,” Paper No. 3502 (
1972
).
6.
P.
Waltrup
and
F.
Billig
, “
Structure of shock waves in cylindrical ducts
,”
AIAA J.
11
(
10
),
1404
1408
(
1973
).
7.
X.
Meng
,
Z.
Ye
, and
K.
Ye
, “
Effects of flexible panels on normal shock trains and performance of scramjet isolators
,”
Aerosp. Sci. Technol.
110
,
106455
(
2021
).
8.
C. P.
Wang
,
X. A.
Tian
,
K. M.
Cheng
, and
Y. Z.
Wu
, “
Numerical analysis of pseudo-shock flow diffusion phenomenon in variable cross-section ducts
,”
Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng.
222
(
8
),
1109
1121
(
2008
).
9.
K.
Matsuo
,
Y.
Miyazato
, and
H.-D.
Kim
, “
Shock train and pseudo-shock phenomena in internal gas flows
,”
Prog. Aerosp. Sci.
35
(
1
),
33
100
(
1999
).
10.
J.
Tan
,
J.
Wu
, and
Z.
Wang
, “
Experimental and numerical investigations on flow fields and performance of dual combustion ramjet
,”
Proc. Inst. Mech. Eng., Part G: J. Aerosp. Eng.
228
(
6
),
920
929
(
2014
).
11.
A. V.
Gnos
,
E. C.
Watson
,
W. R.
Seebaugh
,
R. J.
Sanator
, and
J. P.
DeCarlo
, “
Investigation of flow fields within large scale hypersonic inlet models
,” (
1973
), https://ntrs.nasa.gov/citations/19730013178.
12.
Z.
Meng
,
X.
Fan
,
Y.
Wang
, and
B.
Xiong
, “
Parameterization and optimization for shape-transition curved isolator
,”
Acta Astronaut.
151
,
563
571
(
2018
).
13.
Z.
Meng
,
X.
Fan
,
Y.
Wang
,
B.
Xiong
, and
L.
Lu
, “
Optimization design for shape-transition curved isolator with controllable cross-sectional area
,”
Acta Astronaut.
152
,
335
341
(
2018
).
14.
B. F.
Carroll
and
J. C.
Dutton
, “
Characteristics of multiple shock wave/turbulent boundary-layer interactions in rectangular ducts
,”
J. Propul. Power
6
(
2
),
186
193
(
1990
).
15.
K.
Zheng
,
W.
Tian
,
J.
Qin
,
S.
Zhang
, and
H.
Hu
, “
Effect of film cooling injection on aerodynamic performances of scramjet isolator
,”
Aerosp. Sci. Technol.
94
,
105383
(
2019
).
16.
N.
Bagaveyev
,
V.
Bhagwandin
, and
W.
Engblom
, “
Parametric investigation of racetrack-to-circular cross-section transition of a dual-mode ramjet isolator
,”
AIAA J.
(
2010
).
17.
F.
Cheng
,
S.
Tang
,
Y.
Li
, and
S.
Cao
, “
Numerical analysis of scramjet isolator configurations of three different cross-sectional transition functions
,” in 21st AIAA International Space Planes and Hypersonics Technologies Conference (AIAA,
2017
).
18.
H.
Ren
,
H.
Yuan
,
J.
Zhang
, and
B.
Zhang
, “
Experimental and numerical investigation of isolator in three-dimensional inward turning inlet
,”
Aerosp. Sci. Technol.
95
,
105435
(
2019
).
19.
J. V. M. B.
de Siqueira
and
G. B.
Ribeiro
, “
Numerical study of a scramjet isolator performance under different sidewall compression angles
,”
Therm. Sci. Eng. Prog.
46
,
102174
(
2023
).
20.
X.
Meng
,
Z.
Ye
,
Z.
Hong
, and
K.
Ye
, “
Influences of wall vibration on shock train structures and performance of two-dimensional rectangular isolators in scramjet engine
,”
Acta Astronaut.
166
,
180
198
(
2020
).
21.
N.
Li
, “
Response of shock train to fluctuating angle of attack in a scramjet inlet-isolator
,”
Acta Astronaut.
190
,
430
443
(
2022
).
22.
W.
Huang
,
Z-G
Wang
,
M.
Pourkashanian
,
L.
Ma
,
D. B.
Ingham
,
S-B
Luo
,
J.
Lei
, and
J.
Liu
, “
Numerical investigation on the shock wave transition in a three-dimensional scramjet isolator
,”
Acta Astronaut.
68
(
11
),
1669
1675
(
2011
).
23.
J. A.
Medina
,
H.
Patel
, and
B.
Chudoba
, Inlet Sizing of Hypersonic Vehicles for Conceptual Design (AIAA,
2021
).
24.
E. T.
Curran
, “
Scramjet engines: The first forty years
,”
J. Propul. Power
17
(
6
),
1138
1148
(
2001
).
25.
M.
Smart
and
M.
Suraweera
, “
HIFIRE 7-development of a 3-D scramjet for flight testing
,” in
16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference
(
AIAA
,
2009
).
26.
O.
Musa
,
G.
Huang
, and
Z.
Yu
, “
Assessment of new pressure-corrected design method for hypersonic internal waverider intake
,”
Acta Astronaut.
201
,
230
246
(
2022
).
27.
O.
Musa
,
G.
Huang
, and
Z.
Yu
, “
Evaluation of the pressure-corrected osculating axisymmetric flows method for designing hypersonic wavecatcher intakes with shape transition
,”
J. Aerosp. Eng.
37
(
3
),
04024023
(
2024
).
28.
Y.
You
,
D.
Liang
, and
G.
Huang
, “
Cross section controllable hypersonic inlet design using streamline-tracing and osculating axisymmetric concepts
,” in 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (AIAA,
2007
).
29.
Y.
You
,
D.
Liang
, and
R.
Guo
, “
High enthalpy wind tunnel tests of three-dimensional section controllable internal waverider hypersonic inlet
,”
47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(
AIAA
,
2009
).
30.
H.
Sobieczky
,
B.
Zores
,
Z.
Wang
, and
Y.
Qian
, “
High speed flow design using osculating axisymmetric flows
,” in
Proceedings of 3rd Pacific International Conference on Aerospace Science and Technology
(
AIAA
,
1997
), pp.
182
187
. https://sobieczky.at/aero/literature/H145.pdf.
31.
S.
Molder
and
E. J
Szpiro
, “
Busemann inlet for hypersonic speeds
,”
J. Spacecr.
3
(
8
),
1303
1304
(
1966
).
32.
M.
Smart
, “
Design of three-dimensional hypersonic inlets with rectangular-to-elliptical shape transition
,”
J. Propul. Power
15
(
3
),
408
416
(
1999
).
33.
O.
Musa
,
G.
Huang
,
Z.
Yu
,
B.
Jin
, and
M. J. P.
Razzaghi
, “
Startability analysis of hypersonic overboard spillage internal waverider intake based on new basic flowfield
,”
Phys. Fluids
36
,
056110
(
2024
).
34.
O.
Musa
,
G.
Huang
,
B.
Jin
,
S.
Mölder
, and
Z.
Yu
, “
New parent flowfield for streamline-traced intakes
,”
AIAA J.
61
(
7
),
2906
2921
(
2023
).
35.
O.
Musa
and
G.
Huang
, “
Improved design method for hypersonic intakes using pressure-corrected osculating axisymmetric flows method
,”
AIAA J.
0
(
0
),
1
16
(
2024
).
36.
Y.
You
and
D.
Liang
, “
Design concept of three-dimensional section controllable internal waverider hypersonic inlet
,”
Sci. China Ser. E-Technol. Sci.
52
(
7
),
2017
2028
(
2009
).
37.
A.
Busemann
, “
Die achsensymmetrische kegelige Überschallströmung
,”
Luftfahrtforschung
19
(
4
),
137
144
(
1942
).
38.
Z.
Yu
,
G.
Huang
,
R.
Wang
, and
O.
Musa
, “
Spillage-adaptive fixed-geometry bump inlet of wide speed range
,”
Aerospace
8
(
11
),
340
(
2021
).
39.
J.
Zhang
,
H.
Yuan
,
Y.
Wang
, and
G.
Huang
, “
Experiment and numerical investigation of flow control on a supersonic inlet diffuser
,”
Aerosp. Sci. Technol.
106
,
106182
(
2020
).
40.
C.
Xia
,
G.
Huang
,
T.
Yue
,
H.
Huang
, and
R.
Wang
, “
A new design of variable-geometry TBCC inlet based on an internal waverider concept
,”
Int. J. Astronaut. Eng. Aeronaut.
5
,
37
(
2020
).
41.
J. R.
Colville
,
R. P.
Starkey
, and
M. J.
Lewis
, “
Axisymmetric inlet design for combined-cycle engines
,”
J. Propul. Power
22
(
5
),
1049
1058
(
2006
).
42.
P.
Waltrup
,
F.
Billig
, and
R.
Stockbridge
, “
Engine sizing and integration requirements for hypersonic airbreathing missile applications
,” in
AGARD Ramjets and Ramrockets for Military Applications (SEE N82-32256, 22-99)
(Advisory Group for Aerospace Research and Development, France,
1982
), p. 41, see https://apps.dtic.mil/sti/tr/pdf/ADA115370.pdf.
43.
K.
Tani
,
T.
Kanda
, and
K.
Kudou
, “
Aerodynamic performance of scramjet inlet models with a single strut
,”
J. Propul. Power
22
(
4
),
905
912
(
2006
).
44.
T.
Drayna
,
I.
Nompelis
, and
G.
Candler
, “
Hypersonic inward turning inlets: Design and optimization
,” in
44th AIAA Aerospace Sciences Meeting and Exhibit
(
AIAA
,
2006
).
45.
C. P.
Om Ariara Guhan
,
G.
Arthanareeswaran
,
K. N.
Varadarajan
, and
S.
Krishnan
, “
Numerical optimization of flow uniformity inside an under body-oval substrate to improve emissions of IC engines
,”
J. Comput. Des. Eng.
3
(
3
),
198
214
(
2016
).
You do not currently have access to this content.