Lateral placement of hydrokinetic turbines is an interesting topic, as the blockage effect can increase the flow speed and increase the power coefficient (CP) for neighboring turbines. This study investigates wake dynamics in hydrokinetic turbine arrays with single- (1T), double- (2T), and triple-turbine (3T) configurations under various tip speed ratios (λ = 3.5, 5.8, and 7.1) using large eddy simulation coupled with the actuator line (AL) model. Results indicate that CP increases as lateral spacing decreases, which highlights the advantages of tighter lateral placement. The CP of the 3T-S turbine (the side turbine in the 3T configuration) is larger than those of the other configurations, following the trend CP,3TS>CP,3TM>CP,2T>CP,1T, which reflects a growing blockage effect with more turbines. Wake dynamics are analyzed using time-averaged and instantaneous methods. In 3T scenarios, blockage enhances turbulence kinetic energy, facilitating faster wake recovery, aided by turbine interference. Mean kinetic energy budget analysis shows that 3T-S wakes recover fastest due to increased turbulent convection. For instantaneous analysis, pre-multiplied power spectral density reveals vertical meandering begins at approximately 3D (D is the rotor diameter) and horizontal meandering starts near 4D, with a dominant frequency of St=0.28. Integral length scales show an initial increase followed by a downstream decrease, with minima marking the onset of wake meandering. Dynamic mode decomposition analysis reveals that high-frequency disturbance amplitudes increase with the number of turbines. At the optimal λ, wake effects dominate over inflow effects.

1.
C.
Münch-Alligné
,
J.
Schmid
,
S.
Richard
,
A.
Gaspoz
,
N.
Brunner
, and
V.
Hasmatuchi
, “
Experimental assessment of a new kinetic turbine performance for artificial channels
,”
Water
10
,
311
(
2018
).
2.
M.
Musa
,
G.
Ravanelli
,
W.
Bertoldi
, and
M.
Guala
, “
Hydrokinetic turbines in yawed conditions: Toward synergistic fluvial installations
,”
J. Hydraul. Eng.
146
,
04020019
(
2020
).
3.
M.
Khan
,
G.
Bhuyan
,
M.
Iqbal
, and
J.
Quaicoe
, “
Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review
,”
Appl. Energy
86
,
1823
1835
(
2009
).
4.
N. D.
Laws
and
B. P.
Epps
, “
Hydrokinetic energy conversion: Technology, research, and outlook
,”
Renewable Sustainable Energy Rev.
57
,
1245
1259
(
2016
).
5.
S.
Kang
,
I.
Borazjani
,
J. A.
Colby
, and
F.
Sotiropoulos
, “
Numerical simulation of 3D flow past a real-life marine hydrokinetic turbine
,”
Adv. Water Resour.
39
,
33
43
(
2012
).
6.
V.
Neary
,
B.
Gunawan
, and
D.
Sale
, “
Turbulent inflow characteristics for hydrokinetic energy conversion in rivers
,”
Renewable Sustainable Energy Rev.
26
,
437
445
(
2013
).
7.
J.
Riglin
,
C.
Daskiran
,
J.
Jonas
,
W. C.
Schleicher
, and
A.
Oztekin
, “
Hydrokinetic turbine array characteristics for river applications and spatially restricted flows
,”
Renewable Energy
97
,
274
283
(
2016
).
8.
M.
Ridgill
,
S. P.
Neill
,
M. J.
Lewis
,
P. E.
Robins
, and
S. D.
Patil
, “
Global riverine theoretical hydrokinetic resource assessment
,”
Renewable Energy
174
,
654
665
(
2021
).
9.
D. D.
Apsley
,
T.
Stallard
, and
P. K.
Stansby
, “
Actuator-line CFD modelling of tidal-stream turbines in arrays
,”
J. Ocean Eng. Mar. Energy
4
,
259
271
(
2018
).
10.
W.
Munters
and
J.
Meyers
, “
Dynamic strategies for yaw and induction control of wind farms based on large-eddy simulation and optimization
,”
Energies
11
,
177
(
2018
).
11.
C. M.
Niebuhr
,
M.
Van Dijk
,
V. S.
Neary
, and
J. N.
Bhagwan
, “
A review of hydrokinetic turbines and enhancement techniques for canal installations: Technology, applicability and potential
,”
Renewable Sustainable Energy Rev.
113
,
109240
(
2019
).
12.
L. P.
Chamorro
,
D. R.
Troolin
,
S.-J.
Lee
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Three-dimensional flow visualization in the wake of a miniature axial-flow hydrokinetic turbine
,”
Exp. Fluids
54
,
1
12
(
2013
).
13.
C.
Hill
,
M.
Musa
,
L. P.
Chamorro
,
C.
Ellis
, and
M.
Guala
, “
Local scour around a model hydrokinetic turbine in an erodible channel
,”
J. Hydraul. Eng.
140
,
04014037
(
2014
).
14.
P.
Pyakurel
,
J. H.
Van Zwieten
,
C.
Sultan
,
M.
Dhanak
, and
N. I.
Xiros
, “
Numerical simulation and dynamical response of a moored hydrokinetic turbine operating in the wake of an upstream turbine for control design
,”
Renewable Energy
114
,
1134
1145
(
2017
).
15.
M.
Boudreau
and
G.
Dumas
, “
Comparison of the wake recovery of the axial-flow and cross-flow turbine concepts
,”
J. Wind Eng. Ind Aerodyn.
165
,
137
152
(
2017
).
16.
S.
Chawdhary
,
C.
Hill
,
X.
Yang
,
M.
Guala
,
D.
Corren
,
J.
Colby
, and
F.
Sotiropoulos
, “
Wake characteristics of a triframe of axial-flow hydrokinetic turbines
,”
Renewable Energy
109
,
332
345
(
2017
).
17.
M.
Musa
,
C.
Hill
, and
M.
Guala
, “
Interaction between hydrokinetic turbine wakes and sediment dynamics: Array performance and geomorphic effects under different siting strategies and sediment transport conditions
,”
Renewable Energy
138
,
738
753
(
2019
).
18.
L.
Chamorro
,
C.
Hill
,
V.
Neary
,
B.
Gunawan
,
R.
Arndt
, and
F.
Sotiropoulos
, “
Effects of energetic coherent motions on the power and wake of an axial-flow turbine
,”
Phys. Fluids
27
,
055104
(
2015
).
19.
P.
Mycek
,
B.
Gaurier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Experimental study of the turbulence intensity effects on marine current turbines behaviour. Part I: One single turbine
,”
Renewable Energy
66
,
729
746
(
2014
).
20.
T.
Stallard
,
T.
Feng
, and
P.
Stansby
, “
Experimental study of the mean wake of a tidal stream rotor in a shallow turbulent flow
,”
J. Fluids Struct.
54
,
235
246
(
2015
).
21.
Y.
Chen
,
B.
Lin
,
J.
Lin
, and
S.
Wang
, “
Experimental study of wake structure behind a horizontal axis tidal stream turbine
,”
Appl. Energy
196
,
82
96
(
2017
).
22.
A.
Vinod
and
A.
Banerjee
, “
Performance and near-wake characterization of a tidal current turbine in elevated levels of free stream turbulence
,”
Appl. Energy
254
,
113639
(
2019
).
23.
A.
Vinod
,
C.
Han
, and
A.
Banerjee
, “
Tidal turbine performance and near-wake characteristics in a sheared turbulent inflow
,”
Renewable Energy
175
,
840
852
(
2021
).
24.
T.
Stallard
,
R.
Collings
,
T.
Feng
, and
J.
Whelan
, “
Interactions between tidal turbine wakes: Experimental study of a group of three-bladed rotors
,”
Philos. Trans. R. Soc. A
371
,
20120159
(
2013
).
25.
R. J.
Stevens
and
C.
Meneveau
, “
Flow structure and turbulence in wind farms
,”
Annu. Rev. Fluid Mech.
49
,
311
339
(
2017
).
26.
B.
Du
,
M.
Ge
,
C.
Zeng
,
G.
Cui
, and
Y.
Liu
, “
Influence of atmospheric stability on wind-turbine wakes with a certain hub-height turbulence intensity
,”
Phys. Fluids
33
,
055111
(
2021
).
27.
X.
Gao
,
S.
Zhang
,
L.
Li
,
S.
Xu
,
Y.
Chen
,
X.
Zhu
,
H.
Sun
,
Y.
Wang
, and
H.
Lu
, “
Quantification of 3d spatiotemporal inhomogeneity for wake characteristics with validations from field measurement and wind tunnel test
,”
Energy
254
,
124277
(
2022
).
28.
Z.
Li
,
G.
Dong
, and
X.
Yang
, “
Onset of wake meandering for a floating offshore wind turbine under side-to-side motion
,”
J. Fluid Mech.
934
,
A29
(
2022
).
29.
B.
Li
,
M.
Ge
,
X.
Li
, and
Y.
Liu
, “
A physics-guided machine learning framework for real-time dynamic wake prediction of wind turbines
,”
Phys. Fluids
36
,
035143
(
2024
).
30.
L.
Chamorro
,
C.
Hill
,
S.
Morton
,
C.
Ellis
,
R.
Arndt
, and
F.
Sotiropoulos
, “
On the interaction between a turbulent open channel flow and an axial-flow turbine
,”
J. Fluid Mech.
716
,
658
670
(
2013
).
31.
Z.
Li
,
Y.
Li
, and
X.
Yang
, “
Large eddy simulation and linear stability analysis of active sway control for wind turbine array wake
,”
Phys. Fluids
36
,
075116
(
2024
).
32.
D.
Feng
,
V.
Gupta
,
L. K.
Li
, and
M.
Wan
, “
An improved dynamic model for wind-turbine wake flow
,”
Energy
290
,
130167
(
2024
).
33.
S.
Kang
,
Y.
Kim
,
J.
Lee
,
A.
Khosronejad
, and
X.
Yang
, “
Wake interactions of two horizontal axis tidal turbines in tandem
,”
Ocean Eng.
254
,
111331
(
2022
).
34.
J.
Lee
,
Y.
Kim
,
A.
Khosronejad
, and
S.
Kang
, “
Experimental study of the wake characteristics of an axial flow hydrokinetic turbine at different tip speed ratios
,”
Ocean Eng.
196
,
106777
(
2020
).
35.
A.
Posa
,
I. M.
Viola
, and
R.
Broglia
, “
Influence of the tip speed ratio on the wake dynamics and recovery of axial-flow turbines
,”
Phys. Fluids
36
,
055109
(
2024
).
36.
F.
Porté-Agel
,
M.
Bastankhah
, and
S.
Shamsoddin
, “
Wind-turbine and wind-farm flows: A review
,”
Boundary-Layer Meteorol.
174
,
1
59
(
2020
).
37.
D.
Dehtyriov
,
A.
Schnabl
,
C.
Vogel
,
S.
Draper
,
T.
Adcock
, and
R.
Willden
, “
Fractal-like actuator disc theory for optimal energy extraction
,”
J. Fluid Mech.
927
,
A40
(
2021
).
38.
C.
Hachmann
,
T.
Stallard
,
P.
Stansby
, and
B.
Lin
, “
Experimentally validated study of the impact of operating strategies on power efficiency of a turbine array in a bi-directional tidal channel
,”
Renewable Energy
163
,
1408
1426
(
2021
).
39.
Y.
Chen
,
B.
Lin
, and
D.
Liang
, “
Interactions between approaching flow and hydrokinetic turbines in a staggered layout
,”
Renewable Energy
218
,
119339
(
2023
).
40.
C.
Garrett
and
P.
Cummins
, “
The efficiency of a turbine in a tidal channel
,”
J. Fluid Mech.
588
,
243
251
(
2007
).
41.
H.
Ross
and
B.
Polagye
, “
An experimental assessment of analytical blockage corrections for turbines
,”
Renewable Energy
152
,
1328
1341
(
2020
).
42.
J.
Schluntz
and
R. H.
Willden
, “
The effect of blockage on tidal turbine rotor design and performance
,”
Renewable Energy
81
,
432
441
(
2015
).
43.
A.
Wimshurst
and
R. H.
Willden
, “
Computational observations of the tip loss mechanism experienced by horizontal axis rotors
,”
Wind Energy
21
,
544
557
(
2018
).
44.
J.
McNaugton
,
B.
Cao
,
C.
Vogel
, and
R.
Willden
, “
Model scale testing of multi-rotor arrays designed to exploit constructive interference effects
,” in
13th European Wave and Tidal Energy Conference
(
Technical Committee of the European Wave and Tidal Energy Conference
,
2019
).
45.
S.
Draper
and
T.
Nishino
, “
Centred and staggered arrangements of tidal turbines
,”
J. Fluid Mech.
739
,
72
93
(
2014
).
46.
M.
Musa
,
C.
Hill
,
F.
Sotiropoulos
, and
M.
Guala
, “
Performance and resilience of hydrokinetic turbine arrays under large migrating fluvial bedforms
,”
Nat. Energy
3
,
839
846
(
2018
).
47.
V.
Okulov
,
I.
Naumov
,
I.
Kabardin
,
I.
Litvinov
,
D.
Markovich
,
R.
Mikkelsen
,
J.
Sørensen
,
S.
Alekseenko
, and
D.
Wood
, “
Experiments on line arrays of horizontal-axis hydroturbines
,”
Renewable Energy
163
,
15
21
(
2021
).
48.
M.
Nuernberg
and
L.
Tao
, “
Experimental study of wake characteristics in tidal turbine arrays
,”
Renewable Energy
127
,
168
181
(
2018
).
49.
B.
Gaurier
,
C.
Carlier
,
G.
Germain
,
G.
Pinon
, and
E.
Rivoalen
, “
Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance
,”
Renewable Energy
148
,
1150
1164
(
2020
).
50.
T. A.
Adcock
,
S.
Draper
,
R. H.
Willden
, and
C. R.
Vogel
, “
The fluid mechanics of tidal stream energy conversion
,”
Annu. Rev. Fluid Mech.
53
,
287
310
(
2021
).
51.
I.
Afgan
,
J.
McNaughton
,
S.
Rolfo
,
D.
Apsley
,
T.
Stallard
, and
P.
Stansby
, “
Turbulent flow and loading on a tidal stream turbine by les and rans
,”
Int. J. Heat Fluid Flow
43
,
96
108
(
2013
).
52.
L.
Tian
,
Y.
Song
,
N.
Zhao
,
W.
Shen
,
C.
Zhu
, and
T.
Wang
, “
Effects of turbulence modelling in ad/rans simulations of single wind & tidal turbine wakes and double wake interactions
,”
Energy
208
,
118440
(
2020
).
53.
G.
Dong
,
Z.
Li
,
J.
Qin
, and
X.
Yang
, “
Predictive capability of actuator disk models for wakes of different wind turbine designs
,”
Renewable Energy
188
,
269
281
(
2022
).
54.
X.
Yang
,
A.
Khosronejad
, and
F.
Sotiropoulos
, “
Large-eddy simulation of a hydrokinetic turbine mounted on an erodible bed
,”
Renewable Energy
113
,
1419
1433
(
2017
).
55.
X.
Yang
and
F.
Sotiropoulos
, “
A new class of actuator surface models for wind turbines
,”
Wind Energy
21
,
285
302
(
2018
).
56.
G.
Dong
,
J.
Qin
,
Z.
Li
, and
X.
Yang
, “
Characteristics of wind turbine wakes for different blade designs
,”
J. Fluid Mech.
965
,
A15
(
2023
).
57.
J.
Sandoval
,
K.
Soto-Rivas
,
C.
Gotelli
, and
C.
Escauriaza
, “
Modeling the wake dynamics of a marine hydrokinetic turbine using different actuator representations
,”
Ocean Eng.
222
,
108584
(
2021
).
58.
M. J.
Churchfield
,
Y.
Li
, and
P. J.
Moriarty
, “
A large-eddy simulation study of wake propagation and power production in an array of tidal-current turbines
,”
Philos. Trans. R. Soc. A
371
,
20120421
(
2013
).
59.
S.
Chawdhary
,
D.
Angelidis
,
J.
Colby
,
D.
Corren
,
L.
Shen
, and
F.
Sotiropoulos
, “
Multiresolution large-eddy simulation of an array of hydrokinetic turbines in a field-scale river: The Roosevelt island tidal energy project in New York city
,”
Water Resour. Res.
54
,
10
188
, https://doi.org/10.1029/2018WR023345 (
2018
).
60.
P.
Ouro
,
L.
Ramírez
, and
M.
Harrold
, “
Analysis of array spacing on tidal stream turbine farm performance using large-eddy simulation
,”
J. Fluids Struct.
91
,
102732
(
2019
).
61.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
62.
S. L.
Brunton
,
C. W.
Rowley
, and
D. R.
Williams
, “
Reduced-order unsteady aerodynamic models at low Reynolds numbers
,”
J. Fluid Mech.
724
,
203
233
(
2013
).
63.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
64.
A.
Dotto
,
D.
Lengani
,
D.
Simoni
, and
A.
Tacchella
, “
Dynamic mode decomposition and Koopman spectral analysis of boundary layer separation-induced transition
,”
Phys. Fluids
33
,
104104
(
2021
).
65.
A.
Dotto
,
D.
Barsi
,
D.
Lengani
,
D.
Simoni
, and
F.
Satta
, “
Effect of free-stream turbulence properties on different transition routes for a zero-pressure gradient boundary layer
,”
Phys. Fluids
34
,
054102
(
2022
).
66.
S. L.
Brunton
and
J. N.
Kutz
,
Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control
(
Cambridge University Press
,
2022
).
67.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
68.
P. J.
Schmid
, “
Dynamic mode decomposition and its variants
,”
Annu. Rev. Fluid Mech.
54
,
225
254
(
2022
).
69.
X.
Yang
,
F.
Sotiropoulos
,
R. J.
Conzemius
,
J. N.
Wachtler
, and
M. B.
Strong
, “
Large-eddy simulation of turbulent flow past wind turbines/farms: The virtual wind simulator (VWiS)
,”
Wind Energy
18
,
2025
2045
(
2015
).
70.
L.
Ge
and
F.
Sotiropoulos
, “
A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries
,”
J. Comput. Phys.
225
,
1782
1809
(
2007
).
71.
S.
Kang
,
A.
Lightbody
,
C.
Hill
, and
F.
Sotiropoulos
, “
High-resolution numerical simulation of turbulence in natural waterways
,”
Adv. Water Resour.
34
,
98
113
(
2011
).
72.
J.
Qin
,
Y.
Andreopoulos
,
X.
Jiang
,
G.
Dong
, and
Z.
Chen
, “
Efficient coupling of direct forcing immersed boundary-lattice Boltzmann method and finite element method to simulate fluid-structure interactions
,”
Numer. Methods Fluids
92
,
545
572
(
2020
).
73.
X.
Yang
,
X.
Zhang
,
Z.
Li
, and
G.-W.
He
, “
A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations
,”
J. Comput. Phys.
228
,
7821
7836
(
2009
).
74.
J.
Qin
,
E. M.
Kolahdouz
, and
B. E.
Griffith
, “
An immersed interface-lattice Boltzmann method for fluid-structure interaction
,”
J. Comput. Phys.
428
,
109807
(
2021
).
75.
S.
Kang
,
X.
Yang
, and
F.
Sotiropoulos
, “
On the onset of wake meandering for an axial flow turbine in a turbulent open channel flow
,”
J. Fluid Mech.
744
,
376
403
(
2014
).
76.
X.
Yang
and
F.
Sotiropoulos
, “
Wake characteristics of a utility-scale wind turbine under coherent inflow structures and different operating conditions
,”
Phys. Rev. Fluids
4
,
024604
(
2019
).
77.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge
,
2000
).
You do not currently have access to this content.