In this article, we explored the recurring nature of chaos and bifurcations in Rivlin–Ericksen fluid layer proceeding through porous medium. Subject to heated from below. The Brinkman model is employed as a porous medium. A low-dimensional system, like the Lorenz model, has been constructed using the truncated Galerkin approximation. The fourth-order Runge–Kutta method is adopted to determine the computational solution of a Lorenz-like framework of mathematical equations. For further quantitative assessments, we relied on MATLAB software, and executed plots. We demonstrated an inversely proportional correlation between Darcy number and the scaled Rayleigh number. It indicates that increasing the value of Darcy number causes the chaotic behavior, while increment in elastic parameter promotes an interruption in the commencement of chaotic convection. Our findings showed that elastic parameter and Darcy number influence the transition from stationary to chaotic convection. Comprehending the viscoelastic properties of this fluid is essential for formulating products, streamlining processes, and projecting outcomes.

1.
R. S.
Rivlin
and
J. L.
Ericksen
, “
Stress-deformation relations for isotropic materials
,” in
Collected Papers of R.S. Rivlin
, edited by G. I. Barenblatt and D. D. Joseph (
Springer
,
New York
,
1997
), Vols. I and II, pp.
911
1013
.
2.
L. P.
Srivastava
, “
Unsteady flow of Rivlin–Ericksen fluid with uniform distribution of dust particles through channels of different cross sections in the presence of time dependent pressure gradient
,”
Istanbul Teknil Univer. Bul.
194
,
19
(
1971
).
3.
R. C.
Sharma
and
P.
Kumar
, “
Effect of rotation on thermal instability in Rivlin-Ericksen elastico-viscous fluid
,”
Z. Naturforsch. A
51
(
7
),
821
824
(
1996
).
4.
K.
Prakash
and
R.
Chand
, “
Effect of kinematic visco-elasticity instability of a Rivlin-Ericksen elastico-viscous fluid in porous medium
,”
Ganita Sandesh
14
(
1
),
1
13
(
1999
).
5.
R.
Chand
and
G. C.
Rana
, “
Thermal Instability of Rivlin–Ericksen elastico-viscous nanofluid saturated by a porous medium
,”
J. Fluids Eng.
134
(
12
),
121
203
(
2012
).
6.
R.
Chand
and
G. C.
Rana
, “
Dufour and Soret effects on the thermosolutal instability of Rivlin–Ericksen elastico–viscous fluid in porous medium
,”
Z. Naturforsch. A
67
(
12
),
685
691
(
2012
).
7.
S. N.
Rai
,
B. S.
Bhadauria
,
A.
Srivastava
, and
A.
Kumar
, “
Thermal instability in Hele-Shaw Cell with variable forces for Rivlin-Ericksen Nanofluid
,” in
Computational Fluid Flow and Heat Transfer
(
CRC Press
,
2024
), pp.
212
234
.
8.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
(
2
),
130
141
(
1963
).
9.
D.
Ruelle
and
F.
Takens
, “
On the nature of turbulence
,”
Commun. Math. Phys.
23
,
343
344
(
1971
).
10.
H. G.
Schuster
, “
Deterministic chaos-an introduction
,”
Math. Appl.
25
,
39
(
1996
).
11.
R. C.
Hilborn
,
Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers
(
Oxford University Press
,
2000
).
12.
A. V.
Malevsky
and
D. A.
Yuen
, “
Strongly chaotic non-Newtonian mantle convection
,”
Geophys. Astrophys. Fluid Dyn.
65
(
1–4
),
149
171
(
1992
).
13.
R. E.
Khayat
, “
Chaos and overstability in the thermal convection of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
53
,
227
255
(
1994
).
14.
R. E.
Khayat
, “
Non-linear overstability in the thermal convection of viscoelastic fluids
,”
J. Non-Newtonian Fluid Mech.
58
(
2–3
),
331
356
(
1995
).
15.
D.
Lester
,
M.
Rudman
, and
G.
Metcalfe
, “
Optimisation of heat transfer in non-Newtonian fluids with chaotic advection
,” in
Proceedings of the Fifth International Conference on CFD in the Process Industries
(CSIRO, Melbourne, Australia,
2006
).
16.
B. S.
Bhadauria
, “
Chaotic convection in a viscoelastic fluid saturated porous medium with a heat source
,”
J. Appl. Math.
2016
,
1
.
17.
A.
Mokrani
,
C.
Castelain
, and
H.
Peerhossaini
, “
The effects of chaotic advection on heat transfer
,”
Int. J. Heat Mass Transfer
40
(
13
),
3089
3104
(
1997
).
18.
M.
Bahiraei
,
N.
Mazaheri
, and
M.
Alighardashi
, “
Development of chaotic advection in laminar flow of a non-Newtonian nanofluid: A novel application for efficient use of energy
,”
Appl. Therm. Eng.
124
,
1213
1223
(
2017
).
19.
A.
Singh
,
A.
Jakhar
, and
A.
Kumar
, “
Effect of modulated boundary on heat and mass transport of Walter-B viscoelastic fluid saturated in porous medium
,”
Nonlinear Eng.
13
(
1
),
20240014
(
2024
).
20.
A.
Singh
and
A.
Kumar
, “
An analytical study of mass transport in viscoelastic fluid under the influence of gravity modulation
,”
Res. Square
(
2024
).
21.
G. C.
Layek
and
N. C.
Pati
, “
Chaotic thermal convection of couple-stress fluid layer
,”
Nonlinear Dyn.
91
,
837
852
(
2018
).
22.
K. A.
Abro
,
A.
Atangana
, and
J. F.
Gomez-Aguilar
, “
Optimal synchronization of fractal–fractional differentials on chaotic convection for Newtonian and non-Newtonian fluids
,”
Eur. Phys. J. Spec. Top.
232
(
14
),
2403
2414
(
2023
).
23.
A. P.
Vincent
and
D. A.
Yuen
, “
Thermal attractor in chaotic convection with high-Prandtl-number fluids
,”
Phys. Rev. A
38
(
1
),
328
(
1988
).
24.
A.
Jayaraman
,
J. D.
Scheel
,
H. S.
Greenside
, and
P. F.
Fischer
, “
Characterization of the domain chaos convection state by the largest Lyapunov exponent
,”
Phys. Rev. E
74
(
1
),
016209
(
2006
).
25.
J. K.
Bhattacharjee
,
Convection and Chaos in Fluids
(
World Scientific
,
1987
).
26.
P. G.
Siddheshwar
,
G. N.
Sekhar
, and
G.
Jayalatha
, “
Effect of time-periodic vertical oscillations of the Rayleigh–Bénard system on nonlinear convection in viscoelastic liquids
,”
J. Non-Newtonian Fluid Mech.
165
(
19–20
),
1412
1418
(
2010
).
27.
P.
Vadasz
and
S.
Olek
, “
Transitions and chaos for free convection in a rotating porous layer
,”
Int. J. Heat Mass Transfer
41
(
11
),
1417
1435
(
1998
).
28.
L. J.
Sheu
,
L.
Tam
,
J.
Chen
,
H.
Chen
,
K.
Lin
, and
Y.
Kang
, “
Chaotic convection of viscoelastic fluids in porous media
,”
Chaos Soliton. Fract.
37
(
1
),
113
124
(
2008
).
29.
P.
Vadasz
, “
Instability and route to chaos in porous media convection
,”
Fluids
2
(
2
),
26
(
2017
).
30.
M.
McCormack
,
A.
Teimurazov
,
O.
Shishkina
, and
M.
Linkmann
, “
Wall mode dynamics and transition to chaos in magnetoconvection with a vertical magnetic field
,”
J. Fluid Mech.
975
,
R2
(
2023
).
31.
M. L.
Hounvènou
and
A. V.
Monwanou
, “
Chaotic convection in a magnetic fluid subjected to a pseudo-vector type force
,”
Indian J. Phys.
97
(
5
),
1521
1531
(
2023
).
32.
D.
Laroze
,
P. G.
Siddheshwar
, and
H.
Pleiner
, “
Chaotic convection in a ferrofluid
,”
Commun. Nonlinear Sci. Numer. Simul.
18
(
9
),
2436
2447
(
2013
).
33.
V. A.
Il'in
and
B. L.
Smorodin
, “
Periodic and chaotic regimes of liquid dielectric convection in a horizontal capacitor
,”
Tech. Phys. Lett.
31
,
432
434
(
2005
).
34.
J.
Bishnoi
,
S.
Kumar
, and
R.
Tyagi
, “
Thermal convection of Rivlin-Ericksen fluid governed by the Brownian motion and thermophoresis of nanoparticles with passive behaviour of nanoparticles at the parallel boundaries
,”
J. Nanofluids
12
(
5
),
1194
1209
(
2023
).
35.
R.
Srija
,
K.
Abhishek
,
M. K.
Awasthi
,
D.
Yadav
, and
S. B.
Nair
, “
Instability analysis of swirling cylindrical Rivlin–Ericksen viscoelastic fluid–viscous fluid interface with heat and mass transfer
,”
Int. J. Mod. Phys. B
38
,
2450416
(
2024
).
36.
J. H. E.
Cartwright
,
M.
Feingold
, and
O.
Piro
, “
An introduction to chaotic advection
,” in
Mixing: Chaos Turbulence
(
Springer
,
1999
), pp.
307
342
.
37.
P.
Kiran
, “
G-jitter effects on chaotic convection in a rotating fluid layer
,” in
Advances in Condensed-Matter and Material Physics-Rudimentary Research to Topical Technology
(IntechOpen Limited, London, UK,
2020
).
38.
G. C.
Rana
,
R.
Chand
, and
V.
Sharma
, “
Thermal instability of a Rivlin-Ericksen nanofluid saturated by a Darcy-Brinkman porous medium: A more realistic model
,”
Eng. Trans.
64
(
3
),
271
286
(
2016
).
39.
G. C.
Rana
and
V.
Sharma
, “
Effect of rotation on the onset of convection in Rivlin- Ericksen fluid heated from below in a Brinkman Porous Medium
,”
Inter. J. Fluid Mech. Res.
39
(
6
),
467
(
2012
).
40.
R. C.
Sharma
,
P.
Kumar
, and
S.
Sharma
, “
Rayleigh
Taylor instability of Rivlin-Ericksen elastico-viscous fluid through porous medium
,”
Indian J. Phys. B
75
(
4
),
337
340
(
2001
).
41.
C.
Sparrow
,
The Lorenz Equations
(
Springer
,
New York
,
1982
), p.
269
.
42.
P.
Vadasz
and
S.
Olek
, “
Weak turbulence and chaos for low Prandtl number gravity driven convection in porous media
,”
Transp. Porous Media
37
,
69
91
(
1999
).
43.
A.
Nouri-Borujerdi
,
A. R.
Noghrehabadi
, and
D. A. S.
Rees
, “
Influence of Darcy number on the onset of convection in a porous layer with a uniform heat source
,”
Int. J. Therm. Sci.
47
(
8
),
1020
1025
(
2008
).
44.
A.
Kumar
,
V. K.
Gupta
,
N.
Meena
, and
I.
Hashim
, “
Effect of rotational speed modulation on the weakly nonlinear heat transfer in Walter-B viscoelastic fluid in the highly permeable porous medium
,”
Mathematics
8
(
9
),
1448
(
2020
).
45.
E. X.
DeJesus
and
C.
Kaufman
, “
Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations
,”
Phys. Rev. A
35
(
12
),
5288
(
1987
).
46.
R.
Roslan
,
M. N.
Mahmud
, and
I.
Hashim
, “
Effects of feedback control on chaotic convection in fluid-saturated porous media
,”
Int. J. Heat Mass Transfer
54
(
1–3
),
404
412
(
2011
).
47.
K. A.
Abro
,
A.
Atangana
, and
J. F.
Gomez-Aguilar
, “
Ferromagnetic chaos in thermal convection of fluid through fractal–fractional differentiations
,”
J. Therm. Anal. Calorim.
147
(
15
),
8461
8473
(
2022
).
48.
J. M.
Jawdat
and
I.
Hashim
, “
Low Prandtl number chaotic convection in porous media with uniform internal heat generation
,”
Int. Commun. Heat Mass Transfer
37
(
6
),
629
636
(
2010
).
You do not currently have access to this content.