Accurately capturing boundaries is crucial for simulating fluid–structure interaction (FSI) problems involving flexible objects undergoing large deformations. This paper presents a coupling of the immersed boundary-lattice Boltzmann method with a node-based partly smoothed point interpolation method (NPS-PIM) to enhance the accuracy of simulating moving flexible bodies in FSI problems. The proposed method integrates a multiple relaxation time scheme and employs a force correction technique to address boundary capturing inaccuracies. The effect of virtual fluid is accounted for through a Lagrangian point approximation, ensuring precise FSI force calculations for unsteady solid motions. NPS-PIM is utilized as the solid solver, constructing a moderately softened model stiffness by combining the finite element method (FEM) with the node-based smoothed PIM (NS-PIM). Simulations of flow fields near flexible objects with large deformations demonstrate that the proposed approach reduces numerical errors, improves computational efficiency compared to traditional FSI models using FEM and NS-PIM, and accurately captures the behavior of moving flexible bodies and detailed flow fields.

1.
R.
Mittal
and
G.
Iaccarino
, “
Immersed boundary methods
,”
Annu. Rev. Fluid Mech.
37
,
239
261
(
2005
).
2.
C. S.
Peskin
, “
Flow patterns around heart valves: A numerical method
,”
J. Comput. Phys.
10
(
2
),
252
271
(
1972
).
3.
T. Y.
Hou
and
Z.
Shi
, “
Removing the stiffness of elastic force from the immersed boundary method for the 2D Stokes equations
,”
J. Comput. Phys.
227
(
21
),
9138
9169
(
2008
).
4.
T. Y.
Hou
and
Z.
Shi
, “
An efficient semi-implicit immersed boundary method for the Navier–Stokes equations
,”
J. Comput. Phys.
227
(
20
),
8968
8991
(
2008
).
5.
J.
Mohd-Yusof
, “
Combined immersed-boundary/B-spline methods for simulations of flow in complex geometries
,”
Cent. Turbul. Res. Annu. Res. Briefs
161
(
1
),
317
327
(
1997
).
6.
D.
Hui
,
Z.
Wang
,
Y.
Cai
,
W.
Wu
,
G.
Zhang
, and
M.
Liu
, “
An immersed boundary-lattice Boltzmann method with hybrid multiple relaxation times for viscoplastic fluid-structure interaction problems
,”
Appl. Ocean Res.
119
,
103023
(
2022
).
7.
D.
Hui
,
Z.
Xu
,
W.
Wu
,
G.
Zhang
,
Q.
Wu
, and
M.
Liu
, “
Drafting, kissing, and tumbling of a pair of particles settling in non-Newtonian fluids
,”
Phys. Fluids
34
(
2
),
023301
(
2022
).
8.
G.-Q.
Chen
,
X.
Huang
,
A. M.
Zhang
,
S. P.
Wang
, and
T.
Li
, “
Three-dimensional simulation of a rising bubble in the presence of spherical obstacles by the immersed boundary–lattice Boltzmann method
,”
Phys. Fluids
31
(
9
),
097104
(
2019
).
9.
Y.
Xiao
,
G.
Zhang
,
D.
Hui
,
H.
Yan
,
S.
Feng
, and
S.
Wang
, “
Numerical simulation for water entry and exit of rigid bodies based on the immersed boundary-lattice Boltzmann method
,”
J. Fluids Struct.
109
,
103486
(
2022
).
10.
Y.
Cai
,
J.
Lu
, and
S.
Li
, “
Direct simulation of acoustic scattering problems involving fluid-structure interaction using an efficient immersed boundary-lattice Boltzmann method
,”
J. Acoust. Soc. Am.
144
(
4
),
2256
2268
(
2018
).
11.
Y.
Cai
,
S.
Wang
,
J.
Lu
,
S.
Li
, and
G.
Zhang
, “
Efficient immersed-boundary lattice Boltzmann scheme for fluid-structure interaction problems involving large solid deformation
,”
Phys. Rev. E
99
(
2
),
023310
(
2019
).
12.
J.
Wu
and
C.
Shu
, “
Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications
,”
J. Comput. Phys.
228
(
6
),
1963
1979
(
2009
).
13.
T.
Seta
,
R.
Rojas
,
K.
Hayashi
, and
A.
Tomiyama
, “
Implicit-correction-based immersed boundary–lattice Boltzmann method with two relaxation times
,”
Phys. Rev. E
89
(
2
),
023307
(
2014
).
14.
Z.
Chen
,
C.
Shu
,
D.
Tan
, and
C.
Wu
, “
On improvements of simplified and highly stable lattice Boltzmann method: Formulations, boundary treatment, and stability analysis
,”
Numer. Methods Fluids
87
(
4
),
161
179
(
2018
).
15.
Y.
Cai
,
S.
Li
, and
J.
Lu
, “
An improved immersed boundary‐lattice Boltzmann method based on force correction technique
,”
Numer. Methods Fluids
87
(
3
),
109
133
(
2018
).
16.
L.
Shen
,
E.
Chan
, and
P.
Lin
, “
Calculation of hydrodynamic forces acting on a submerged moving object using immersed boundary method
,”
Comput. Fluids
38
(
3
),
691
702
(
2009
).
17.
Y.
Cai
,
J.
Lu
,
S.
Wang
,
Y.
Xia
, and
S.
Li
, “
A Lagrangian point approximation-based immersed boundary–lattice Boltzmann method for FSI problems involving deformable body
,”
Int. J. Comput. Methods
19
(
3
),
2150070
(
2022
).
18.
W.
Li
,
W. Q.
Wang
,
Y.
Yan
, and
Z. F.
Yu
, “
A strong-coupled method combined finite element method and lattice Boltzmann method via an implicit immersed boundary scheme for fluid structure interaction
,”
Ocean Eng.
214
,
107779
(
2020
).
19.
Z.
Li
,
G.
Oger
, and
D.
Le Touzé
, “
A partitioned framework for coupling LBM and FEM through an implicit IBM allowing non-conforming time-steps: Application to fluid-structure interaction in biomechanics
,”
J. Comput. Phys.
449
,
110786
(
2022
).
20.
J.
Qin
,
Y.
Andreopoulos
,
X.
Jiang
,
G.
Dong
, and
Z.
Chen
, “
Efficient coupling of direct forcing immersed boundary‐lattice Boltzmann method and finite element method to simulate fluid‐structure interactions
,”
Numer. Methods Fluids
92
(
6
),
545
572
(
2020
).
21.
A.
Khoshghalb
,
A.
Shafee
,
A.
Tootoonchi
,
O.
Ghaffaripour
, and
S.
Jazaeri
, “
Application of the smoothed point interpolation methods in computational geomechanics: A comparative study
,”
Comput. Geotech.
126
,
103714
(
2020
).
22.
G.
Zhang
,
Z.
Chen
,
Z.
Sui
,
D.
Tao
,
Z.
He
,
Q.
Tang
et al, “
A cell‐based smoothed radial point interpolation method with virtual nodes for three‐dimensional mid‐frequency acoustic problems
,”
Numer. Methods Eng.
119
(
6
),
548
566
(
2019
).
23.
G.
Zhang
,
H.
Lu
,
D.
Yu
,
Z.
Bao
, and
H.
Wang
, “
A node-based partly smoothed point interpolation method (NPS-PIM) for dynamic analysis of solids
,”
Eng. Anal. Boundary Elem.
87
,
165
172
(
2018
).
24.
G.
Zhang
,
S.
Wang
,
Z.
Sui
,
L.
Sun
,
Z.
Zhang
, and
Z.
Zong
, “
Coupling of SPH with smoothed point interpolation method for violent fluid-structure interaction problems
,”
Eng. Anal. Boundary Elem.
103
,
1
10
(
2019
).
25.
S.
Wang
,
Y.
Cai
,
G.
Zhang
,
X.
Quan
,
J.
Lu
, and
S.
Li
, “
A coupled immersed boundary‐lattice Boltzmann method with smoothed point interpolation method for fluid‐structure interaction problems
,”
Numer. Methods Fluids
88
(
8
),
363
384
(
2018
).
26.
S.
Wang
,
G.
Zhang
,
Z.
Zhang
,
D.
Hui
, and
Z.
Zong
, “
An immersed smoothed point interpolation method (IS‐PIM) for fluid‐structure interaction problems
,”
Numer. Methods Fluids
85
(
4
),
213
234
(
2017
).
27.
J.
Lu
,
H.
Han
,
B.
Shi
, and
Z.
Guo
, “
Immersed boundary lattice Boltzmann model based on multiple relaxation times
,”
Phys. Rev. E
85
(
1
),
016711
(
2012
).
28.
Y. H.
Qian
, “
Lattice BGK models for Navier-Stokes equation
,”
Europhys. Lett.
17
(
6
),
479
484
(
1992
).
29.
X.
He
and
L. S.
Luo
, “
Lattice Boltzmann model for the incompressible Navier–Stokes equation
,”
J. Stat. Phys.
88
(
3
),
927
944
(
1997
).
30.
I.
Ginzbourg
and
P.
Adler
, “
Boundary flow condition analysis for the three-dimensional lattice Boltzmann model
,”
J. Phys. II France
4
(
2
),
191
214
(
1994
).
31.
S. K.
Kang
and
Y. A.
Hassan
, “
A comparative study of direct-forcing immersed boundary-lattice Boltzmann methods for stationary complex boundaries
,”
Numer. Methods Fluids
66
(
9
),
1132
1158
(
2011
).
32.
C. S.
Peskin
, “
The immersed boundary method
,”
Acta Numer.
11
,
479
517
(
2002
).
33.
J.
Kim
,
D.
Kim
, and
H.
Choi
, “
An immersed-boundary finite-volume method for simulations of flow in complex geometries
,”
J. Comput. Phys.
171
(
1
),
132
150
(
2001
).
34.
M.-C.
Lai
and
C. S.
Peskin
, “
An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
,”
J. Comput. Phys.
160
(
2
),
705
719
(
2000
).
35.
T.
Belytschko
,
W. K.
Liu
, and
B.
Moran
,
Nonlinear Finite Elements for Continua and Structures
(
John Wiley & Sons
,
Chichester
,
2000
).
36.
G. R.
Liu
and
Y. T.
Gu
, “
A point interpolation method for two-dimensional solids
,”
Int. J. Numer. Methods Eng.
50
(
4
),
937
951
(
2001
).
37.
J. G.
Wang
and
G. R.
Liu
, “
A point interpolation meshless method based on radial basis functions
,”
Numer. Methods Eng.
54
(
11
),
1623
1648
(
2002
).
38.
G. R.
Liu
and
G. Y.
Zhang
,
Smoothed Point Interpolation Methods: G Space Theory and Weakened Weak Forms
(
World Scientific Press
,
Singapore
,
2013
).
39.
G. R.
Liu
,
Meshfree Methods: Moving beyond the Finite Element Method
, 2nd ed. (
CRC Press
,
Boca Taton, FL
,
2009
).
40.
Z.
Zhang
,
G.
Liu
, and
B. C.
Khoo
, “
Immersed smoothed finite element method for two dimensional fluid–structure interaction problems
,”
Numer. Methods Eng.
90
(
10
),
1292
1320
(
2012
).
41.
S.
Wang
,
G.
Zhang
,
Y.
Cai
et al, “
Comparisons of two representative methods classified as immersed boundary and domain methods
,”
Eng. Anal. Boundary Elem.
132
,
383
398
(
2021
).
42.
S.
Wang
,
G.
Zhang
,
B.
Yan
et al, “
Simulating fluid-structure interactions with a hybrid immersed smoothed point interpolation method
,”
Eng. Anal. Boundary Elem.
130
,
352
363
(
2021
).
43.
S.
Turek
and
J.
Hron
, “
Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow
,” in
Fluid–Structure Interaction (Lecture Notes in Computational Science and Engineering)
, edited by
H. J.
Bungartz
and
M.
Schäfer
(
Springer
,
Berlin, Heidelberg
,
2006
), pp.
371
85
.
44.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
,
C. J.
Freitas
,
H.
Coleman
, and
P. E.
Raad
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
078001
(
2008
).
45.
S.
Turek
,
J.
Hron
,
M.
Madlik
,
M.
Razzaq
,
H.
Wobker
, and
J. F.
Acker
, “
Numerical simulation and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with application to hemodynamics
,” in
Fluid Structure Interaction II
(
Springer
,
2011
), pp.
193
220
.
46.
T.
Dunne
, “
An Eulerian approach to fluid–structure interaction and goal‐oriented mesh adaptation
,”
Numer. Methods Fluids
51
(
9
),
1017
1039
(
2006
).
47.
W. X.
Huang
and
H. J.
Sung
, “
An immersed boundary method for fluid–flexible structure interaction
,”
Comput. Methods Appl. Mech. Eng.
198
(
33
),
2650
2661
(
2009
).
48.
X.
Wang
and
L. T.
Zhang
, “
Interpolation functions in the immersed boundary and finite element methods
,”
Comput. Mech.
45
(
4
),
321
334
(
2010
).
49.
Z. Q.
Zhang
,
G. R.
Liu
, and
B. C.
Khoo
, “
A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid–structure interaction problems
,”
Comput. Mech.
51
(
2
),
129
150
(
2013
).
50.
K.
Sugiyama
,
S.
Ii
,
S.
Takeuchi
,
S.
Takagi
, and
Y.
Matsumoto
, “
A full Eulerian finite difference approach for solving fluid–structure coupling problems
,”
J. Comput. Phys.
230
(
3
),
596
627
(
2011
).
51.
W. Q.
Wang
,
R.
Yin
,
D. W.
Hao
et al, “
Modeling and simulation of fish-like swimming in a straight-line swimming state using immersed boundary method
,”
Adv. Mech. Eng.
6
,
489683
(
2014
).
52.
E. D.
Tytell
,
C. Y.
Hsu
,
T. L.
Williams
et al, “
Interactions between internal forces, body stiffness, and fluid environment in a neuromechanical model of lamprey swimming
,”
Proc. Natl. Acad. Sci. U. S. A.
107
,
19832
19837
(
2010
).
You do not currently have access to this content.