In the realm of big data, discerning patterns in nonlinear systems affected by external control inputs is increasingly challenging. Our approach blends the coarse-graining strengths of centroid-based unsupervised clustering with sparse regression in a way to enhance the closed-loop feedback control of nonlinear dynamical systems. A key innovation in our method is the employment of cluster coefficients through cluster decomposition of time-series measurements. Capturing the dynamics of these coefficients enables the construction of a deterministic model for the observed states of the system. This model is able to predict the dynamics of periodic and chaotic systems, under the influence of external control inputs. Demonstrated in both the low-dimensional Lorenz system and the high-dimensional scenario of a flexible plate immersed in a fluid flow, our model showcases its ability to pinpoint critical system features and adaptability in reaching any observed state. A distinctive feature of our control strategy is the novel hopping technique between clusters, which successfully averts lobe switching in the Lorenz system and accelerates vortex shedding in fluid–structure interaction systems while maintaining the mean aerodynamic characteristics. Such a data-centric control design becomes evident in a myriad of applications, ranging from energy harvesting devices to mitigating emissions through drag control.

1.
C. W.
Rowley
,
I.
Mezić
,
S.
Bagheri
,
P.
Schlatter
, and
D. S.
Henningson
, “
Spectral analysis of nonlinear flows
,”
J. Fluid Mech.
641
,
115
127
(
2009
).
2.
P. J.
Schmid
, “
Dynamic mode decomposition of numerical and experimental data
,”
J. Fluid Mech.
656
,
5
28
(
2010
).
3.
A.
Hervé
,
D.
Sipp
,
P. J.
Schmid
, and
M.
Samuelides
, “
A physics-based approach to flow control using system identification
,”
J. Fluid Mech.
702
,
26
58
(
2012
).
4.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Discovering governing equations from data by sparse identification of nonlinear dynamical systems
,”
Proc. Natl. Acad. Sci. U. S. A.
113
,
3932
3937
(
2016
).
5.
S. A.
Billings
,
Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains
(
John Wiley & Sons
,
2013
).
6.
J. L.
Proctor
,
S. L.
Brunton
, and
J. N.
Kutz
, “
Dynamic mode decomposition with control
,”
SIAM J. Appl. Dyn. Syst.
15
,
142
161
(
2016
).
7.
S. L.
Brunton
,
J. L.
Proctor
, and
J. N.
Kutz
, “
Sparse identification of nonlinear dynamics with control (SINDYc)
,”
IFAC
49
,
710
715
(
2016
).
8.
E.
Kaiser
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
,”
Proc. R. Soc. A
474
,
20180335
(
2018
).
9.
C.
Fefferman
,
S.
Mitter
, and
H.
Narayanan
, “
Testing the manifold hypothesis
,”
J. Am. Math. Soc.
29
,
983
1049
(
2016
).
10.
G.
Berkooz
,
P.
Holmes
, and
J. L.
Lumley
, “
The proper orthogonal decomposition in the analysis of turbulent flows
,”
Annu. Rev. Fluid Mech.
25
,
539
575
(
1993
).
11.
P.
Holmes
,
J. L.
Lumley
,
G.
Berkooz
, and
C. W.
Rowley
,
Turbulence, Coherent Structures, Dynamical Systems and Symmetry
(
Cambridge University Press
,
2012
).
12.
D. L.
Donoho
and
C.
Grimes
, “
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
,”
Proc. Natl. Acad. Sci. U. S. A.
100
,
5591
5596
(
2003
).
13.
S. T.
Roweis
and
L. K.
Saul
, “
Nonlinear dimensionality reduction by locally linear embedding
,”
Science
290
,
2323
2326
(
2000
).
14.
A. C.
Antoulas
,
Approximation of Large-Scale Dynamical Systems
(
SIAM
,
2005
).
15.
C. W.
Rowley
and
S. T.
Dawson
, “
Model reduction for flow analysis and control
,”
Annu. Rev. Fluid Mech.
49
,
387
417
(
2017
).
16.
C. W.
Rowley
, “
Model reduction for fluids, using balanced proper orthogonal decomposition
,”
Int. J. Bifurcation Chaos
15
,
997
1013
(
2005
).
17.
B.
Moore
, “
Principal component analysis in linear systems: Controllability, observability, and model reduction
,”
IEEE Trans. Autom. Control.
26
,
17
32
(
1981
).
18.
B. R.
Noack
,
M.
Morzynski
, and
G.
Tadmor
,
Reduced-Order Modelling for Flow Control
(
Springer Science & Business Media
,
2011
), Vol.
528
.
19.
H.
Wagner
, “
Über die entstehung des dynamischen auftriebes von tragflügeln
,” Z. Angew. Math. Mech.
5
,
17
(
1924
).
20.
T.
Theodorsen
, “
General theory of aerodynamic instability and the mechanism of flutter
,”
Technical Report No. NACA-TR-496
(
1949
).
21.
S. L.
Brunton
and
C. W.
Rowley
, “
Empirical state-space representations for Theodorsen's lift model
,”
J. Fluids Struct.
38
,
174
186
(
2013
).
22.
S. L.
Brunton
,
C. W.
Rowley
, and
D. R.
Williams
, “
Reduced-order unsteady aerodynamic models at low Reynolds numbers
,”
J. Fluid Mech.
724
,
203
233
(
2013
).
23.
S. L.
Brunton
,
S. T.
Dawson
, and
C. W.
Rowley
, “
State-space model identification and feedback control of unsteady aerodynamic forces
,”
J. Fluids Struct.
50
,
253
270
(
2014
).
24.
M. K.
Hickner
,
U.
Fasel
,
A. G.
Nair
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Data-driven unsteady aeroelastic modeling for control
,”
AIAA J.
61
,
780
792
(
2023
).
25.
N.
Fabbiane
,
O.
Semeraro
,
S.
Bagheri
, and
D. S.
Henningson
, “
Adaptive and model-based control theory applied to convectively unstable flows
,”
Appl. Mech. Rev.
66
,
060801
(
2014
).
26.
J.-N.
Juang
and
R. S.
Pappa
, “
An eigensystem realization algorithm for modal parameter identification and model reduction
,”
J. Guidance, Control, Dyn.
8
,
620
627
(
1985
).
27.
A. G.
Nair
and
K.
Taira
, “
Network-theoretic approach to sparsified discrete vortex dynamics
,”
J. Fluid Mech.
768
,
549
571
(
2015
).
28.
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Deep learning for universal linear embeddings of nonlinear dynamics
,”
Nat. Commun.
9
,
4950
(
2018
).
29.
K.
Champion
,
B.
Lusch
,
J. N.
Kutz
, and
S. L.
Brunton
, “
Data-driven discovery of coordinates and governing equations
,”
Proc. Natl. Acad. Sci. U. S. A.
116
,
22445
22451
(
2019
).
30.
D.
Floryan
and
M. D.
Graham
, “
Data-driven discovery of intrinsic dynamics
,”
Nat. Mach. Intell.
4
,
1113
1120
(
2022
).
31.
M.
Cenedese
,
J.
Axås
,
B.
Bäuerlein
,
K.
Avila
, and
G.
Haller
, “
Data-driven modeling and prediction of non-linearizable dynamics via spectral submanifolds
,”
Nat. Commun.
13
,
872
(
2022
).
32.
E.
Kaiser
,
B. R.
Noack
,
L.
Cordier
,
A.
Spohn
,
M.
Segond
,
M.
Abel
,
G.
Daviller
,
J.
Östh
,
S.
Krajnović
, and
R. K.
Niven
, “
Cluster-based reduced-order modelling of a mixing layer
,”
J. Fluid Mech.
754
,
365
414
(
2014
).
33.
J.
Burkardt
,
M.
Gunzburger
, and
H.-C.
Lee
, “
POD and CVT-based reduced-order modeling of Navier–Stokes flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
337
355
(
2006
).
34.
Y.
Cao
,
E.
Kaiser
,
J.
Borée
,
B. R.
Noack
,
L.
Thomas
, and
S.
Guilain
, “
Cluster-based analysis of cycle-to-cycle variations: Application to internal combustion engines
,”
Exp. Fluids
55
,
1837
(
2014
).
35.
R.
Ishar
,
E.
Kaiser
,
M.
Morzyński
,
D.
Fernex
,
R.
Semaan
,
M.
Albers
,
P. S.
Meysonnat
,
W.
Schröder
, and
B. R.
Noack
, “
Metric for attractor overlap
,”
J. Fluid Mech.
874
,
720
755
(
2019
).
36.
H.
Li
and
J.
Tan
, “
Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer
,”
Phys. Fluids
32
,
056104
(
2020
).
37.
E.
Kaiser
,
B. R.
Noack
,
A.
Spohn
,
L. N.
Cattafesta
, and
M.
Morzyński
, “
Cluster-based control of a separating flow over a smoothly contoured ramp
,”
Theor. Comput. Fluid Dyn.
31
,
579
593
(
2017
).
38.
A. G.
Nair
,
C.-A.
Yeh
,
E.
Kaiser
,
B. R.
Noack
,
S. L.
Brunton
, and
K.
Taira
, “
Cluster-based feedback control of turbulent post-stall separated flows
,”
J. Fluid Mech.
875
,
345
375
(
2019
).
39.
L. P.
Kaelbling
,
M. L.
Littman
, and
A. W.
Moore
, “
Reinforcement learning: A survey
,”
J. Artif. Intell. Res.
4
,
237
285
(
1996
).
40.
H.
Li
,
D.
Fernex
,
R.
Semaan
,
J.
Tan
,
M.
Morzyński
, and
B. R.
Noack
, “
Cluster-based network model
,”
J. Fluid Mech.
906
,
A21
(
2021
).
41.
J.-C.
Loiseau
and
S. L.
Brunton
, “
Constrained sparse Galerkin regression
,”
J. Fluid Mech.
838
,
42
67
(
2018
).
42.
J.-C.
Loiseau
,
B. R.
Noack
, and
S. L.
Brunton
, “
Sparse reduced-order modelling: Sensor-based dynamics to full-state estimation
,”
J. Fluid Mech.
844
,
459
490
(
2018
).
43.
A. M.
Mountcastle
and
S. A.
Combes
, “
Wing flexibility enhances load-lifting capacity in bumblebees
,”
Proc. R. Soc. B
280
,
20130531
(
2013
).
44.
J. M.
Akkala
,
A. E.
Panah
, and
J. H.
Buchholz
, “
Vortex dynamics and performance of flexible and rigid plunging airfoils
,”
J. Fluids Struct.
54
,
103
121
(
2015
).
45.
J. D.
Eldredge
and
A. R.
Jones
, “
Leading-edge vortices: Mechanics and modeling
,”
Annu. Rev. Fluid Mech.
51
,
75
104
(
2019
).
46.
M.-C.
Hsu
and
Y.
Bazilevs
, “
Fluid–structure interaction modeling of wind turbines: Simulating the full machine
,”
Comput. Mech.
50
,
821
833
(
2012
).
47.
K.
Menon
and
R.
Mittal
, “
Aeroelastic response of an airfoil to gusts: Prediction and control strategies from computed energy maps
,”
J. Fluids Struct.
97
,
103078
(
2020
).
48.
V.
Mathai
,
G. A.
Tzezana
,
A.
Das
, and
K. S.
Breuer
, “
Fluid–structure interactions of energy-harvesting membrane hydrofoils
,”
J. Fluid Mech.
942
,
R4
(
2022
).
49.
K.
Taira
and
T.
Colonius
, “
The immersed boundary method: A projection approach
,”
J. Comput. Phys.
225
,
2118
2137
(
2007
).
50.
A.
Goza
and
T.
Colonius
, “
A strongly coupled immersed-boundary formulation for thin elastic structures
,”
J. Comput. Phys.
336
,
401
411
(
2017
).
51.
T.
Colonius
and
K.
Taira
, “
A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions
,”
Comput. Methods Appl. Mech. Eng.
197
,
2131
2146
(
2008
).
52.
C.
Bishop
,
Pattern Recognition and Machine Learning
(
Springer-Verlag
,
2006
), Vol.
2
, pp.
5
43
.
53.
S.
Lloyd
, “
Least squares quantization in PCM
,”
IEEE Trans. Inform. Theory
28
,
129
137
(
1982
).
54.
Q.
Du
,
V.
Faber
, and
M.
Gunzburger
, “
Centroidal voronoi tessellations: Applications and algorithms
,”
SIAM Rev.
41
,
637
676
(
1999
).
55.
J.
Burkardt
,
M.
Gunzburger
, and
H.-C.
Lee
, “
Centroidal voronoi tessellation-based reduced-order modeling of complex systems
,”
SIAM J. Sci. Comput.
28
,
459
484
(
2006b
).
56.
D.
Arthur
and
S.
Vassilvitskii
, “
K-means++ the advantages of careful seeding
,” in
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(Society for Industrial and Applied Mathematics,
2007
), pp.
1027
1035
.
57.
J. A.
Hartigan
,
Clustering Algorithms
(
John Wiley & Sons, Inc.
,
1975
).
58.
R.
Tibshirani
,
G.
Walther
, and
T.
Hastie
, “
Estimating the number of clusters in a data set via the gap statistic
,”
J. R. Stat. Soc.: Ser. B
63
,
411
423
(
2001
).
59.
G.
Schwarz
, “
Estimating the dimension of a model
,”
Ann. Stat.
6
,
461
464
(
1978
).
60.
R. G.
Lomax
and
D. L.
Hahs-Vaughn
,
An Introduction to Statistical Concepts
(
Routledge
,
2013
).
61.
J. A.
Hartigan
and
M. A.
Wong
, “
Algorithm as 136: A k-means clustering algorithm
,”
J. R. Stat. Soc. Ser. C
28
,
100
108
(
1979
).
62.
K.
Taira
,
S. L.
Brunton
,
S. T.
Dawson
,
C. W.
Rowley
,
T.
Colonius
,
B. J.
McKeon
,
O. T.
Schmidt
,
S.
Gordeyev
,
V.
Theofilis
, and
L. S.
Ukeiley
, “
Modal analysis of fluid flows: An overview
,”
AIAA J.
55
,
4013
4041
(
2017
).
63.
H.
Akaike
, “
Information theory and an extension of the maximum likelihood principle
,” in
Selected Papers of Hirotugu Akaike
(
Springer
,
1998
), pp.
199
213
.
64.
H.
Akaike
, “
A new look at the statistical model identification
,”
IEEE Trans. Autom. Control.
19
,
716
723
(
1974
).
65.
N. M.
Mangan
,
J. N.
Kutz
,
S. L.
Brunton
, and
J. L.
Proctor
, “
Model selection for dynamical systems via sparse regression and information criteria
,”
Proc. R. Soc. A
473
,
20170009
(
2017
).
66.
C. F.
Van Loan
and
G.
Golub
,
Matrix Computations
, Johns Hopkins Studies in Mathematical Sciences (
Johns Hopkins University Press
,
1996
), Vol.
5
.
67.
A.
Miller
,
Subset Selection in Regression
(
CRC Press
,
2002
).
68.
F.
Allgöwer
,
T. A.
Badgwell
,
J. S.
Qin
,
J. B.
Rawlings
, and
S. J.
Wright
, “
Nonlinear predictive control and moving horizon estimation—an introductory overview
,”
Adv. Control: Highlights ECC'
99
,
391
449
(
1999
).
69.
E. F.
Camacho
,
C.
Bordons
,
E. F.
Camacho
, and
C.
Bordons
,
Model Predictive Controllers
(
Springer
,
2007
).
70.
E. N.
Lorenz
, “
Deterministic nonperiodic flow
,”
J. Atmos. Sci.
20
,
130
141
(
1963
).
71.
M.
Schroeder
, “
Synthesis of low-peak-factor signals and binary sequences with low autocorrelation (corresp.)
,”
IEEE Trans. Inform. Theory
16
,
85
89
(
1970
).
72.
S. L.
Brunton
,
B. W.
Brunton
,
J. L.
Proctor
,
E.
Kaiser
, and
J. N.
Kutz
, “
Chaos as an intermittently forced linear system
,”
Nat. Commun.
8
,
19
(
2017
).
73.
S.
Barwey
and
V.
Raman
, “
Data-driven reduction and decomposition with time-axis clustering
,”
Proc. R. Soc. A
479
,
20220776
(
2023
).
74.
V.
Lakshmikantham
,
S.
Leela
, and
A. A.
Martynyuk
,
Stability Analysis of Nonlinear Systems
(
Springer
,
1989
).
75.
U.
Brandes
, “
A faster algorithm for betweenness centrality
,”
J. Math. Sociol.
25
,
163
177
(
2001
).
76.
M.
Rubinov
and
O.
Sporns
, “
Complex network measures of brain connectivity: Uses and interpretations
,”
Neuroimage
52
,
1059
1069
(
2010
).
77.
B. R.
Noack
,
K.
Afanasiev
,
M.
Morzyński
,
G.
Tadmor
, and
F.
Thiele
, “
A hierarchy of low-dimensional models for the transient and post-transient cylinder wake
,”
J. Fluid Mech.
497
,
335
363
(
2003
).
78.
K.
Taira
and
H.
Nakao
, “
Phase-response analysis of synchronization for periodic flows
,”
J. Fluid Mech.
846
,
R2
(
2018
).
79.
A. M.
Roma
,
C. S.
Peskin
, and
M. J.
Berger
, “
An adaptive version of the immersed boundary method
,”
J. Comput. Phys.
153
,
509
534
(
1999
).
80.
K.
Taira
,
C. W.
Rowley
,
T.
Colonius
, and
D. R.
Williams
, “
Lift enhancement for low-aspect-ratio wings with periodic excitation
,”
AIAA J.
48
,
1785
1790
(
2010
).
81.
M. E.
Newman
, “
Modularity and community structure in networks
,”
Proc. Natl. Acad. Sci. U. S. A.
103
,
8577
8582
(
2006
).
82.
A. R.
Jones
,
O.
Cetiner
, and
M. J.
Smith
, “
Physics and modeling of large flow disturbances: Discrete gust encounters for modern air vehicles
,”
Annu. Rev. Fluid Mech.
54
,
469
493
(
2022
).
83.
A. G.
Nair
,
K.
Taira
,
B. W.
Brunton
, and
S. L.
Brunton
, “
Phase-based control of periodic flows
,”
J. Fluid Mech.
927
,
A30
(
2021
).
84.
J.
Wang
,
L.
Geng
,
L.
Ding
,
H.
Zhu
, and
D.
Yurchenko
, “
The state-of-the-art review on energy harvesting from flow-induced vibrations
,”
Appl. Energy
267
,
114902
(
2020
).
85.
Y. J.
Lee
,
Y.
Qi
,
G.
Zhou
, and
K. B.
Lua
, “
Vortex-induced vibration wind energy harvesting by piezoelectric mems device in formation
,”
Sci. Rep.
9
,
20404
(
2019
).
86.
E.
Izadpanah
,
A.
Ashouri
,
M.
Liravi
, and
Y.
Amini
, “
Effect of vortex-induced vibration of finned cylinders on heat transfer enhancement
,”
Phys. Fluids
31
,
073604
(
2019
).
87.
J. A.
Jarrell
,
A. A.
Twite
,
K. H.
Lau
,
M. N.
Kashani
,
A. A.
Lievano
,
J.
Acevedo
,
C.
Priest
,
J.
Nieva
,
D.
Gottlieb
, and
R. S.
Pawell
, “
Intracellular delivery of mRNA to human primary T cells with microfluidic vortex shedding
,”
Sci. Rep.
9
,
3214
(
2019
).
88.
H.
Mania
,
M. I.
Jordan
, and
B.
Recht
, “
Active learning for nonlinear system identification with guarantees
,”
J. Mach. Learn. Res.
23
,
1433
1462
(
2022
).
89.
D.
Fernex
,
B. R.
Noack
, and
R.
Semaan
, “
Cluster-based network modeling—from snapshots to complex dynamical systems
,”
Sci. Adv.
7
,
eabf5006
(
2021
).
You do not currently have access to this content.