This study addresses the challenges faced by unconventional tight sandstone reservoirs, including low porosity, permeability, high clay content, and complex wettability, which lead to increased flow resistance and injection pressures. The research aims to optimize depressure and increasing injection methods by investigating the effects of various two-phase and three-phase displacement systems, employing experimental treatments including acids, alkalis, and surfactants. Nuclear magnetic resonance, computed tomography, scanning electron microscopy, inductively coupled plasma, and wettability tests are utilized to investigate the mechanisms of these treatments. Key findings indicate that weak alkaline ethylenediaminetetraacetate tetrasodium and weak acids like hydroxyethylidene diphosphonic acid and acetic acid can cause significant pore blockage, while hydrochloric acid can dissolve pore minerals, achieves a high depressure rate of 89.42%. Although surfactants exhibit a negative effect in two-phase displacement systems, they demonstrate considerable potential in three-phase displacement. Surfactants can modify the wettability of rock surfaces, reduce oil saturation, and improve water phase permeability, resulting in a depressure rate of 11.68%. Notably, the combination of surfactants and HCl enhances the depressure rate to 60.82% and improves oil displacement efficiency from 26.12% to 57.96%. The optimal formulation identified is “0.5% unconventional agent (CNI-A) +3% HCl,” which improves oil displacement capacity and alleviates injection pressure, providing valuable insights for the management of heterogeneous sandstone reservoirs.

1.
Alameedy
,
U.
,
Fatah
,
A.
,
Abbas
,
A. K.
, and
Al Yaseri
,
A.
, “
Matrix acidizing in carbonate rocks and the impact on geomechanical properties: A review
,”
Fuel
349
,
128586
(
2023
).
2.
Bagherzadeh
,
P.
,
Goshtasbi
,
K.
,
Kazemzadeh
,
E.
,
Kashef
,
M.
, and
Aloki Bakhtiari
,
H.
, “
Stress-dependence of the permeability, porosity, and compressibility in fractured porous media regarding fracturing condition
,”
Bull. Eng. Geol. Environ.
80
,
5091
5110
(
2021
).
3.
Bai
,
H.
,
Zhou
,
F.
,
Wu
,
J.
,
Dong
,
Y.
,
Zhang
,
K.
, and
Xu
,
H.
, “
Feasibility study of crude oil mobilizing with nano emulsion in low oil saturation reservoir
,”
Geoenergy Sci. Eng.
232
,
212408
(
2024
).
4.
Beyranvand
,
M. K.
and
Rostami
,
B.
, “
Direct insight into the cause and time evaluation of spontaneous emulsification of water in crude oil during low salinity waterflooding using microfluidic model
,”
Energy Fuels
36
,
2462
2473
(
2022
).
5.
Cao
,
Y.
,
Yuan
,
G.
,
Wang
,
Y.
,
Zan
,
N.
,
Jin
,
Z.
, and
Liu
,
K.
, “
Successive formation of secondary pores via feldspar dissolution in deeply buried feldspar-rich clastic reservoirs in typical petroliferous basins and its petroleum geological significance
,”
Sci. China Earth Sci.
65
,
1673
1703
(
2022
).
6.
Chen
,
S.
,
Han
,
M.
, and
AlSofi
,
A. M.
, “
Synergistic effects between different types of surfactants and an associating polymer on surfactant-polymer flooding under high-temperature and high-salinity conditions
,”
Energy Fuels
35
,
14484
14498
(
2021
).
7.
Deng
,
Z.
,
Ji
,
Z.
,
Zhang
,
S.
,
He
,
L.
,
Lu
,
X.
, and
Wu
,
W.
, “
New online shunt acidification for water injection increasing technology and its application in Huanjiang Oilfield
,”
J. Chem.
2021
,
3989308
.
8.
Fan
,
K.
,
Li
,
S.
, and
Li
,
W.
, “
Experimental study on the wax deposit properties in the radial direction in crude oil pipeline: Wax precipitation, carbon number distribution
,”
Pet. Sci. Technol.
40
,
2319
2335
(
2022
).
9.
Feng
,
Q.
,
Chen
,
X.
,
Zhang
,
N.
,
Li
,
X.
,
Zhou
,
J.
, and
Li
,
S.
, “
Laboratory experiment and application evaluation of a bio-nano-depressurization and injection-increasing composite system in medium–low permeability offshore reservoirs
,”
ACS Omega
8
,
15553
15563
(
2023
).
10.
He
,
S.
,
Zhang
,
J.
,
Li
,
C.
,
Tan
,
X.
,
Ping
,
Y.
, and
Li
,
D.
, “
Evaluation of improving water flooding technology by volume fracturing of water injection wells in complex fractured reservoirs: A case study of Chang 6 reservoirs in Huaqing Oilfield, Ordos Basin
,”
Geofluids
2022
,
1
11
.
11.
Karami
,
M.
,
Sedaee
,
B.
, and
Nakhaee
,
A.
, “
Effect of different injection fluids scenarios on swelling and migration of common clays in case of permeability variations: A micromodel study
,”
J. Pet. Explor. Prod. Technol.
13
,
1761
1787
(
2023
).
12.
Khan
,
S. H.
,
Sheng
,
Y. M.
,
Critelli
,
S.
,
Civitelli
,
M.
,
Mughal
,
M. S.
, and
Basharat
,
U.
, “
Depositional and diagenetic controls on reservoir properties of the lower Cambrian Khewra Sandstone, eastern salt range, Sub-Himalaya, Pakistan
,”
Mar. Pet. Geol.
161
,
106651
(
2024
).
13.
Lai
,
H.
,
Shi
,
W.
,
Wang
,
J.
,
Tang
,
L.
, and
Lai
,
N.
, “
Development of hydrophobic-modified nanosilica for pressure reduction and injection increase in an ultra-low-permeability reservoir
,”
Appl. Sci.
13
,
5248
(
2023
).
14.
Li
,
G.
,
Zhu
,
R.
,
Zhang
,
Y.
,
Chen
,
Y.
,
Cui
,
J.
, and
Jiang
,
Y.
, “
Geological characteristics, evaluation criteria and discovery significance of Paleogene Yingxiongling shale oil in Qaidam Basin, NW China
,”
Pet. Explor. Dev.
49
,
21
36
(
2022
).
15.
Li
,
P.
,
Ou
,
Y.
,
Chen
,
H.
,
Li
,
Q.
,
Zhao
,
L.
, and
Yan
,
J.
, “
Pore throat distributions and movable fluid occurrences in different diagenetic facies of tight sandstone reservoirs in the Triassic Chang 6 reservoirs, Wuqi Area, Ordos Basin, China
,”
J. Pet. Explor. Prod. Technol.
14
,
1783
1797
(
2024
).
16.
Liang
,
T.
,
Hou
,
J. R.
,
Qu
,
M.
,
Xi
,
J. X.
, and
Raj
,
I.
, “
Application of nanomaterial for enhanced oil recovery
,”
Pet. Sci.
19
,
882
899
(
2022
).
17.
Liao
,
J.
,
Hong
,
L.
,
Li
,
Z.
,
Tan
,
K.
,
Zhao
,
L.
, and
Yang
,
J.
, “
Characterization of ultra-low permeability tight sandstone reservoir properties and criteria for hydrocarbon accumulation in Chang 6 member, Huaqing area, Ordos basin
,”
Front. Earth Sci.
10
,
1013776
(
2022
).
18.
Liu
,
G.
,
Jiang
,
F.
,
Ge
,
L.
,
Zhang
,
Q.
,
Chen
,
X.
, and
Fan
,
Z.
, “
Investigation of salinity and ion effects on low salinity water flooding efficiency in a tight sandstone reservoir
,”
Energy Rep.
9
,
2732
2744
(
2023
).
19.
Liu
,
R.
,
Chen
,
Z.
,
Zhao
,
X.
,
Wang
,
H.
,
Xu
,
Y.
, and
Liu
,
R.
, “
Experimental and molecular dynamics studies of physicochemical properties of highly thickening and active nanofluids based on acrylamide modified silica
,”
Phys. Fluids
35
,
082019
(
2023
).
20.
Liu
,
W.
,
Liu
,
B.
,
Pan
,
Z.
,
Qu
,
Y.
,
Diao
,
K.
, and
Sun
,
Q.
, “
Electric resonance-based depressurization and augmented injection in low-permeability reservoirs
,”
Energy Fuels
36
,
14220
14229
(
2022
).
21.
Liu
,
X.
,
Wang
,
F.
,
Liu
,
B.
,
Tian
,
J.
,
Shang
,
T.
, and
Ma
,
J.
, “
Factors controlling hydrocarbon accumulation in Jurassic Reservoirs in the southwest Ordos Basin, NW China
,”
Acta Geol. Sin.
94
,
467
484
(
2020
).
22.
Mustafa
,
A.
,
Aly
,
M.
,
Aljawad
,
M. S.
,
Dvorkin
,
J.
,
Solling
,
T.
, and
Sultan
,
A.
, “
A green and efficient acid system for carbonate reservoir stimulation
,”
J. Pet. Sci. Eng.
205
,
108974
(
2021
).
23.
Nandwani
,
S. K.
,
Malek
,
N. I.
,
Chakraborty
,
M.
, and
Gupta
,
S. A.
, “
Comprehensive study based on the application of different genre of surface-active ionic liquid and alkali combination systems in surfactant flooding
,”
Energy Fuels
34
,
9411
9425
(
2020
).
24.
Olayiwola
,
S. O.
and
Dejam
,
M.
, “
Synergistic interaction of nanoparticles with low salinity water and surfactant during alternating injection into sandstone reservoirs to improve oil recovery and reduce formation damage
,”
J. Mol. Liq.
317
,
114228
(
2020
).
25.
Pei
,
H.
,
Zhang
,
G.
,
Ge
,
J.
,
Tang
,
M.
, and
Zheng
,
Y.
, “
Comparative effectiveness of alkaline flooding and alkaline–surfactant flooding for improved heavy-oil recovery
,”
Energy Fuels
26
,
2911
2919
(
2012
).
26.
Su
,
Z.
,
Li
,
T.
,
Bai
,
M.
, and
Zhou
,
Z.
, “
Influence of mineral composition on initiation pressure of waterflood-induced fractures in tight sandstone reservoir
,”
ACS Omega
9
,
9269
9285
(
2024
).
27.
Tariq
,
Z.
,
Aljawad
,
M. S.
,
Hassan
,
A.
,
Mahmoud
,
M.
, and
Al Ramadhan
,
A.
, “
Chelating agents as acid-fracturing fluids: Experimental and modeling studies
,”
Energy Fuels
35
,
2602
2618
(
2021
).
28.
Wang
,
C.
,
Luo
,
W.
,
Dai
,
X.
,
Wu
,
J.
,
Zhou
,
X.
, and
Huang
,
K.
, “
A study on acid dissolution characteristics and the permeability enhancement of deep coal rock
,”
Processes
12
,
2209
(
2024
).
29.
Wang
,
P.
,
Hu
,
Y. H.
,
Zhang
,
L. Y.
,
Meng
,
Y.
,
Ma
,
Z. F.
, and
Wang
,
T. R.
, “
Experimental study of the influencing factors and mechanisms of the pressure-reduction and augmented injection effect by nanoparticles in ultra-low permeability reservoirs
,”
Pet. Sci.
21
,
1915
1927
(
2024
).
30.
Wang
,
Y.
,
Chang
,
X.
,
Sun
,
Y.
,
Shi
,
B.
, and
Qin
,
S.
, “
Investigation of fluid inclusion and oil geochemistry to delineate the charging history of Upper Triassic Chang 6, Chang 8, and Chang 9 tight oil reservoirs, Southeastern Ordos Basin, China
,”
Mar. Pet. Geol.
113
,
104115
(
2020
).
31.
Wang
,
Y.
,
Han
,
X.
,
Li
,
J.
,
Liu
,
R.
,
Wang
,
Q.
, and
Huang
,
C.
, “
Review on oil displacement technologies of enhanced oil recovery: State-of-the-art and outlook
,”
Energy Fuels
37
,
2539
2568
(
2023
).
32.
Wang
,
Y.
,
Wang
,
D.
,
Li
,
Y.
,
Zheng
,
L.
,
Su
,
H.
, and
Zhang
,
Y.
, “
Numerical simulation: Diverting study and analysis on nanoparticle-viscoelastic-surfactant acid in high-temperature carbonate reservoir
,”
Phys. Fluids
36
,
076627
(
2024
).
33.
Xiao
,
W.
,
Yang
,
Y.
,
Li
,
M.
,
Li
,
N.
,
You
,
J.
, and
Zhao
,
J.
, “
Experimental study on the oil production characteristics during the waterflooding of different types of reservoirs in Ordos Basin, NW China
,”
Pet. Explor. Dev.
48
,
935
945
(
2021
).
34.
Xu
,
H.
,
Li
,
Y.
,
Wu
,
H.
,
Ding
,
Z.
,
Yuan
,
S.
, and
Bai
,
H.
, “
Development and performance evaluation of nonionic surfactant-stabilized nanoemulsion for enhanced oil recovery applications in tight reservoir
,”
Phys. Fluids
36
,
032015
(
2024
).
35.
You
,
J.
and
Lee
,
K. J.
, “
Analyzing the dynamics of mineral dissolution during acid fracturing by pore-scale modeling of acid-rock interaction
,”
SPE J.
26
,
639
652
(
2021
).
36.
Zhang
,
X.
,
Li
,
Q.
, and
Wei
,
X.
, “
Optimization of acid gas injection to improve solubility and residual trapping
,”
Greenhouse Gases.
11
,
1001
1023
(
2021
).
37.
Zhao
,
T.
,
Guo
,
Q.
,
Sun
,
W.
,
Li
,
S.
,
He
,
F.
, and
Dai
,
X.
, “
Synthesis and oil displacement performance evaluation of cation-nonionic gemini surfactant
,”
Colloids Surf. A
647
,
129106
(
2022
).
38.
Zhong
,
H.
,
Yang
,
T.
,
Yin
,
H.
,
Lu
,
J.
,
Zhang
,
K.
, and
Fu
,
C.
, “
Role of alkali type in chemical loss and asp-flooding enhanced oil recovery in sandstone formations
,”
SPE Reserv. Eval. Eng.
23
,
431
445
(
2020
).
39.
Zhu
,
D.
,
Wang
,
Y.
,
Cui
,
M.
,
Zhou
,
F.
,
Zhang
,
Y.
, and
Liang
,
C.
, “
Effects of spent viscoelastic-surfactant acid flow on wormholes propagation and diverting performance in heterogeneous carbonate reservoir
,”
Energy Rep.
8
,
8321
8332
(
2022
).
40.
Zuo
,
M. S.
,
Chen
,
H.
,
Liu
,
X. L.
,
Liu
,
H. P.
,
Wu
,
Y.
, and
Qi
,
X. Y.
, “
Fractal model of spontaneous imbibition in low-permeability reservoirs coupled with heterogeneity of pore seepage channels and threshold pressure
,”
Pet. Sci.
21
,
1002
1017
(
2024
).
You do not currently have access to this content.