Calcium-Magnesium-Alumino-Silicate (CMAS) is a category of atmospheric debris in the form of dirt, sand, and ash that damage thermal barrier coatings (TBC) in aircraft engines. The damage is not a direct result of erosion, but rather, CMAS melts in engines and impacts the TBCs. In this state, the CMAS can infiltrate the TBC microstructure which leads to surface damage from secondary stresses associated with thermal loading and expansion in the microstructure. Understanding the fluid dynamic processes of the infiltration is key to develop TBCs that mitigate TBC infiltration damage. The fluidic processes are evaluated using microstructure-resolving, finite-volume, multiphase, volume-of-fluid computational fluid dynamics simulations (CFD). CFD results using experimentally measured temperature-dependent polynomial CMAS viscosity are compared to experiments and analytical models and indicate that feathery-shaped microstructure in TBCs inhibit CMAS infiltration more than rectangular channel TBCs. Such observations are conditional on the Ohnesorge number (Oh). For low Oh values, the rectangular channel reduces infiltration, while the feathery channel is more effective at reducing infiltration for higher Oh values. Three-dimensional CFD results under-predicted experimental and theoretical infiltration depth. A novel infiltration model for feathery channels, the “Feathery Pipe-Network Model” (FPNM) was implemented. FPNM results agree with experiments and other analytical models. Using FPNM in conjunction with the concentric-pipe model achieves a 25% margin-of-error when evaluated against experimental results. This is a 15% reduction in error compared to using the open-pipe and concentric-pipe models as the prediction. This enhanced prediction model can lead to safer and more cost-effective aircraft operation in debris-laden environments.

1.
W.
Chen
and
L.
Zhao
, “
Review – Volcanic ash and its influence on aircraft engine components
,”
Proc. Eng.
99
,
795
803
(
2015
).
2.
J. L.
Smialek
, “
The chemistry of Saudi Arabian sand: A deposition problem on helicopter turbine airfoils
,”in
Gordon Conference on Corrosion
, NTRS (
New London, New Hampshire
,
1991
).
3.
T. D.
Bennett
and
F.
Yu
, “
A nondestructive technique for determining thermal properties of thermal barrier coatings
,”
J. Appl. Phys.
97
,
13520
(
2005
).
4.
A. K.
Sirigiri
and
P. D.-I. W.
Kowalczyk
,
Modeling and simulation of CMAS infiltration in EB-PVD TBCS
(
Institute of Materials Research
,
2018
).
5.
A.
Flores Renteria
and
W. A.
Kaysser
,
A Small-Angle Scattering Analysis of the Influence of Manufacture and Thermal Induced Morpological Changes on the Thermal Conductivity of EB-PVD PYSZ Thermal Barrier Coatings
(
Fakultät Georessourcen und Materialtechnik
,
2007
).
6.
R.
Naraparaju
,
M.
Hüttermann
,
U.
Schulz
, and
P.
Mechnich
, “
Tailoring the EB-PVD columnar microstructure to mitigate the infiltration of CMAS in 7YSZ thermal barrier coatings
,”
J. Eur. Ceram. Soc.
37
,
261
270
(
2017
).
7.
T. R.
Kakuda
,
C. G.
Levi
, and
T. D.
Bennett
, “
The thermal behavior of CMAS-infiltrated thermal barrier coatings
,”
Surf. Coat. Technol.
272
,
350
356
(
2015
).
8.
J.
Wu
,
H.
Bo Guo
,
Y.
Zhi Gao
, and
S.
Kai Gong
, “
Microstructure and thermo-physical properties of yttria stabilized zirconia coatings with CMAS deposits
,”
J. Eur. Ceram. Soc.
31
,
1881
1888
(
2011
).
9.
S.
Krämer
,
S.
Faulhaber
,
M.
Chambers
,
D.
Clarke
,
C.
Levi
,
J.
Hutchinson
, and
A.
Evans
, “
Mechanisms of cracking and delamination within thick thermal barrier systems in aero-engines subject to calcium-magnesium-alumino-silicate (CMAS) penetration
,”
Mater. Sci. Eng. A
490
,
26
35
(
2008
).
10.
C.
Mercer
,
S.
Faulhaber
,
A.
Evans
, and
R.
Darolia
, “
A delamination mechanism for thermal barrier coatings subject to calcium–magnesium–alumino-silicate (CMAS) infiltration
,”
Acta Mater.
53
,
1029
1039
(
2005
).
11.
H.
Peng
,
L.
Wang
,
L.
Guo
,
W.
Miao
,
H.
Guo
, and
S.
Gong
, “
Degradation of EB-PVD thermal barrier coatings caused by CMAS deposits
,”
Prog. Nat. Sci.: Mater. Int.
22
,
461
467
(
2012
).
12.
M. P.
Boyce
, “
Advanced industrial gas turbines for power generation
,” in
Combined Cycle Systems for Near-Zero Emission Power Generation
, edited by
A. D.
Rao
(
Woodhead Publishing
,
2012
), pp.
44
102
.
13.
G.
Costa
,
B. J.
Harder
,
V. L.
Wiesner
,
D.
Zhu
,
N.
Bansal
,
K. N.
Lee
,
N. S.
Jacobson
,
D.
Kapush
,
S. V.
Ushakov
, and
A.
Navrotsky
, “
Thermodynamics of reaction between gas-turbine ceramic coatings and ingested CMAS corrodents
,”
J. Am. Ceram. Soc.
102
,
2948
2964
(
2019
).
14.
R.
Naraparaju
,
U.
Schulz
,
P.
Mechnich
,
P.
Döbber
, and
F.
Seidel
, “
Degradation study of 7wt.% yttria stabilised zirconia (7YSZ) thermal barrier coatings on aero-engine combustion chamber parts due to infiltration by different CaO–MgO–Al2O3–SiO2 variants
,”
Surf. Coat. Technol.
260
,
73
81
(
2014
).
15.
R.
Wellman
,
G.
Whitman
, and
J. R.
Nicholls
, “
CMAS corrosion of EB PVD TBCS: Identifying the minimum level to initiate damage
,”
Int. J. Refract. Met. Hard Mater.
28
,
124
132
(
2010
).
16.
S.
Krämer
,
J.
Yang
,
C. G.
Levi
, and
C. A.
Johnson
, “
Thermochemical interaction of thermal barrier coatings with molten CaO–MgO–Al2O3–SiO2 (CMAS) deposits
,”
J. Am. Ceram. Soc.
89
,
3167
3175
(
2006
).
17.
J.
Xia
,
L.
Yang
,
R. T.
Wu
,
Y. C.
Zhou
,
L.
Zhang
,
K. L.
Huo
, and
M.
Gan
, “
Degradation mechanisms of air plasma sprayed free-standing yttria-stabilized zirconia thermal barrier coatings exposed to volcanic ash
,”
Appl. Surf. Sci.
481
,
860
871
(
2019
).
18.
M. R.
Kabir
,
A. K.
Sirigiri
,
R.
Naraparaju
, and
U.
Schulz
, “
Flow kinetics of molten silicates through thermal barrier coating: A numerical study
,”
Coatings
9
,
332
(
2019
).
19.
B. A.
Cavainolo
,
M. P.
Kinzel
,
R.
Naraparaju
, and
M. R.
Kabir
, “
Simulating CMAS infiltration of an EB-PVD thermal barrier coating using the volume-of-fluid method
,” in
AIAA 2023-4427
(
San Diego, CA
,
2023
).
20.
Y.
Zhao
,
H.
Zhang
,
G.
Wang
,
Y.
Yang
, and
W.
Tian
, “
Analysis of slope stability based on layered infiltration theory under wet-dry cycle conditions
,”
KSCE J. Civ. Eng.
100028
(
2024
).
21.
P.
Carman
, “
Fluid flow through granular beds
,”
Chem. Eng. Res. Des.
75
,
S32
S48
(
1997
).
22.
R. P.
Chapuis
and
M.
Aubertin
, “
On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils
,”
Can. Geotech. J.
40
,
616
628
(
2003
).
23.
R.
Naraparaju
,
J. J.
Gomez Chavez
,
P.
Niemeyer
,
K.-U.
Hess
,
W.
Song
,
D. B.
Dingwell
,
S.
Lokachari
,
C. V.
Ramana
, and
U.
Schulz
, “
Estimation of CMAS infiltration depth in EB-PVD TBCS: A new constraint model supported with experimental approach
,”
J. Eur. Ceram. Soc.
39
,
2936
2945
(
2019
).
24.
D.
Benavente
,
P.
Lock
,
M. A.
García Del Cura
et al, “
Predicting the capillary imbibition of porous rocks from microstructure
,”
Transp. Porous Media
49
,
59
76
(
2002
).
25.
J.
Cai
,
T.
Jin
,
J.
Kou
,
S.
Zou
,
J.
Xiao
, and
Q.
Meng
, “
Lucas–Washburn equation-based modeling of capillary-driven flow in porous systems
,”
Langmuir
37
,
1623
1636
(
2021
).
26.
B.
Cavainolo
and
M.
Kinzel
, “
Investigation of volume-of-fluid method to simulate melting-solidification of CMAS particles
,” in
ASME 2022 Fluids Engineering Division Summer Meeting
,
Volume 2
: Multiphase Flow (MFTC); Computational Fluid Dynamics (CFDTC); Micro and Nano Fluid Dynamics (MNFDTC), Paper No: FEDSM2022-85863, V002T04A002 (
ASME
,
Toronto, Ontario, Canada
,
2022
).
27.
Siemens
, Star-CCM+ User's Manual (
2023
).
28.
J.
Zhang
, “
Lattice Boltzmann method for microfluidics: Models and applications
,”
Microfluid. Nanofluid.
10
,
1
28
(
2011
).
29.
S.
Le Henaff
,
T.
Peterson
,
C.
Hovell
,
J.
Mares
,
M.
Coathup
,
V.
Reumers
, and
M.
Kinzel
, “
A Study of Microfluidic Device Geometries on Fluid Instabilities
,” in
ASME 2022 Fluids Engineering Division Summer Meeting
,
Volume 2
: Multiphase Flow (MFTC); Computational Fluid Dynamics (CFDTC); Micro and Nano Fluid Dynamics (MNFDTC), Paper No: FEDSM2022-87470, V002T04A013 (
ASME
,
Toronto, Ontario
,
2022
).
30.
D.
Mikaelian
and
B.
Jones
, “
Modeling of capillary-driven microfluidic networks using electric circuit analogy
,”
SN Appl. Sci.
2
,
415
(
2020
).
31.
P. R.
Waghmare
and
S. K.
Mitra
, “
Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels
,”
J. Colloid Interface Sci.
351
,
561
569
(
2010
).
32.
E. W.
Washburn
, “
The dynamics of capillary flow
,”
Phys. Rev.
17
,
273
283
(
1921
).
33.
J.
Han
,
Y.
Zou
,
D.
Wu
, and
Y.
Zhang
, “
Investigating the thermal, mechanical and thermal cyclic properties of plasma-sprayed Al2O3-7YSZ/7YSZ double ceramic layer TBCS
,”
J. Eur. Ceram. Soc.
43
,
4124
4135
(
2023
).
34.
S.
Webb
, “
Silicate melts: Relaxation, rheology, and the glass transition
,”
Rev. Geophys.
35
,
191
218
, https://doi.org/10.1029/96RG03263 (
1997
).
35.
A.
Bakal
,
K.
Roebbecke
,
H.
Wang
,
W.
Deng
,
X.
Zhang
,
J. W.
Fergus
,
X.
Liu
,
Z.
Liu
,
K.
Brinkman
,
S.
Das
,
S.
Dryepondt
,
J. W.
Fergus
,
Z.
Guo
,
M.
Han
,
J. A.
Hawk
,
T.
Horita
,
P.
Hosemann
,
J.
Li
,
E.
Olivetti
,
A.
Pandey
,
R. B.
Rebak
,
I.
Roy
,
C.
Shang
, and
J.
Zhang
, “
Evolution of the thermal conductivity of Sm2Zr2O7 under CMAS attack
,” in
Energy Materials 2017
(
Springer International Publishing
,
Cham
,
2017
), pp.
227
235
.
36.
N. P.
Bansal
and
S. R.
Choi
, “
Properties of CMAS glass from desert sand
,”
Ceram. Int.
41
,
3901
3909
(
2015
).
37.
T. R.
Kakuda
,
A. M.
Limarga
,
T. D.
Bennett
, and
D. R.
Clarke
, “
Evolution of thermal properties of EB-PVD 7YSZ thermal barrier coatings with thermal cycling
,”
Acta Mater.
57
,
2583
2591
(
2009
).
38.
L. G.
Bravo
,
N.
Jain
,
P.
Khare
,
M.
Murugan
,
A.
Ghoshal
, and
A.
Flatau
, “
Physical aspects of CMAS particle dynamics and deposition in turboshaft engines
,”
J. Mater. Res.
35
,
2249
2259
(
2020
).
39.
D.
Gründing
,
M.
Smuda
,
T.
Antritter
,
M.
Fricke
,
D.
Rettenmaier
,
F.
Kummer
,
P.
Stephan
,
H.
Marschall
, and
D.
Bothe
, “
A comparative study of transient capillary rise using direct numerical simulations
,”
Appl. Math. Modell.
86
,
142
165
(
2020
).
40.
Y.
Shiri
and
S. M. J.
Seyed Sabour
, “
Analytical, experimental, and numerical study of capillary rise dynamics from inertial to viscous flow
,”
Phys. Fluids
34
,
102105
(
2022
).
41.
A.
Hamraoui
and
T.
Nylander
, “
Analytical approach for the Lucas–Washburn equation
,”
J. Colloid Interface Sci.
250
,
415
421
(
2002
).
42.
L.
Eça
and
M.
Hoekstra
, “
A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies
,”
J. Comput. Phys.
262
,
104
130
(
2014
).
43.
I. B.
Celik
,
U.
Ghia
,
P. J.
Roache
, and
C. J.
Freitas
, “
Procedure for estimation and reporting of uncertainty due to discretization in CFD applications
,”
J. Fluids Eng.
130
,
078001
(
2008
).
44.
K.
Chandran
,
S.
Rittgers
, and
A.
Yoganathan
,
Biofluid Mechanics: The Human Circulation
, 2nd ed. (
CRC Press
,
2012
).
45.
H.
Zhao
,
C. G.
Levi
, and
H. N.
Wadley
, “
Molten silicate interactions with thermal barrier coatings
,”
Surf. Coat. Technol.
251
,
74
86
(
2014
).
You do not currently have access to this content.