The formation and extension of the gas pocket in the impeller can lead to the rapid deterioration or even failure of the centrifugal pump's two-phase pressurization. It is difficult to directly measure the characteristic parameters of the gas pocket in the high-speed rotating impeller, such as the void fraction, by experimental methods. In this paper, the two-phase performance of the centrifugal pump is studied by numerical simulation and validated by the experiment. The positive pressure gradient at the end of the blade pressure surface is the main reason why the centrifugal pump can boost at high inlet gas volume fraction (IGVF). As the IGVF increases, both the length and thickness of the gas pocket gradually increase. The head coefficient of the pump has an approximately quadratic relationship with the void fraction in the impeller. The mechanism model of the gas pocket flow is established by the force analysis of the gas pocket and its downstream single bubble in the impeller channel. The model can effectively predict the extension position of the gas pocket and the void fraction in the centrifugal impeller and is validated by numerical simulation.

1.
K.
Kan
,
F.
Zhao
,
H.
Xu
,
J.
Feng
,
H.
Chen
, and
W.
Liu
, “
Energy performance evaluation of an axial-flow pump as turbine under conventional and reverse operating modes based on an energy loss intensity model
,”
Phys. Fluids
35
,
015125
(
2023
).
2.
M.
Liu
,
Y.
Han
,
L.
Tan
,
Y.
Lu
,
C.
Ma
, and
J.
Gou
, “
Theoretical prediction model of transient performance for a mixed flow pump under fast start-up conditions
,”
Phys. Fluids
35
,
025125
(
2023
).
3.
Z.
Zhao
,
W.
Song
,
Y.
Jin
, and
L.
He
, “
Numerical study on flow stall and kinetic energy conversion of low-specific-speed centrifugal pump
,”
Phys. Fluids
35
,
044104
(
2023
).
4.
M.
Murakami
and
K.
Minemura
, “
Effects of entrained air on the performance of centrifugal pumps: 2nd report, effects of number of blades
,”
Bull. JSME
17
,
1286
(
1974
).
5.
Z.-G.
Ge
,
J.-J.
Feng
,
X.-Q.
Luo
,
G.-J.
Zhu
, and
D.-H.
He
, “
Numerical investigation of gas–liquid two-phase performance in a mixed-flow pump by using a modified drag force model
,”
Phys. Fluids
35
,
053324
(
2023
).
6.
M.
Murakami
and
K.
Minemura
, “
Effects of entrained air on the performance of a centrifugal pump: 1st report, performance and flow conditions
,”
Bull. JSME
17
,
1047
(
1974
).
7.
J. M. C.
Cubas
,
H.
Stel
,
E. M.
Ofuchi
,
M. A.
Marcelino Neto
, and
R. E. M.
Morales
, “
Visualization of two-phase gas-liquid flow in a radial centrifugal pump with a vaned diffuser
,”
J. Pet. Sci. Eng.
187
,
106848
(
2020
).
8.
D.
He
,
L.
Zhao
,
Z.
Chang
,
Z.
Zhang
,
P.
Guo
, and
B.
Bai
, “
On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller
,”
J. Pet. Sci. Eng.
203
,
108587
(
2021
).
9.
L.
Chang
,
Q.
Xu
,
C.
Yang
,
X.
Su
,
H.
Wang
, and
L.
Guo
, “
Experimental study on gas–liquid flow patterns and bubble size in a high-speed rotating impeller of a three-stage centrifugal pump
,”
Exp. Therm. Fluid Sci.
145
,
110896
(
2023
).
10.
X.-Q.
Luo
,
Z.-G.
Ge
,
J.-J.
Feng
,
G.-J.
Zhu
,
C-H
Li
, and
D.-H.
He
, “
Experimental investigation of pressure fluctuation in a mixed-flow pump under gas–liquid two-phase flow conditions
,”
Phys. Fluids
36
,
023361
(
2024
).
11.
A.
Poullikkas
, “
Effects of two-phase liquid-gas flow on the performance of nuclear reactor cooling pumps
,”
Prog. Nucl. Energy
42
,
3
(
2003
).
12.
J. Y.
Zhang
,
S. J.
Cai
,
Y. J.
Li
,
H. W.
Zhu
, and
Y. X.
Zhang
, “
Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump
,”
Exp. Therm. Fluid Sci.
70
,
125
(
2016
).
13.
C. L.
Shao
,
C. Q.
Li
, and
J. F.
Zhou
, “
Experimental investigation of flow patterns and external performance of a centrifugal pump that transports gas-liquid two-phase mixtures
,”
Int. J. Heat Fluid Flow
71
,
460
(
2018
).
14.
Y.
Long
,
C.
An
,
R.
Zhu
, and
J.
Chen
, “
Research on hydrodynamics of high velocity regions in a water-jet pump based on experimental and numerical calculations at different cavitation conditions
,”
Phys. Fluids
33
,
045124
(
2021
).
15.
J.
Lu
,
J.
Liu
,
L.
Qian
,
X.
Liu
,
S.
Yuan
,
B.
Zhu
, and
Y.
Dai
, “
Investigation of pressure pulsation induced by quasi-steady cavitation in a centrifugal pump
,”
Phys. Fluids
35
,
025119
(
2023
).
16.
X.
Jia
,
Y.
Zhang
,
H.
Lv
, and
Z.
Zhu
, “
Study on external performance and internal flow characteristics in a centrifugal pump under different degrees of cavitation
,”
Phys. Fluids
35
,
014104
(
2023
).
17.
J.
Zhu
,
H.
Zhu
,
J.
Zhang
, and
H.-Q.
Zhang
, “
A numerical study on flow patterns inside an electrical submersible pump (ESP) and comparison with visualization experiments
,”
J. Pet. Sci. Eng.
173
,
339
(
2019
).
18.
C.
Zhang
,
S.
Xu
, and
P.
Yu
, “
Numerical analysis of the effects of gas-phase properties on the internal characteristics and wear in a centrifugal pump
,”
Aquacult. Eng.
91
,
102126
(
2020
).
19.
J. A.
García
,
M.
Asuaje
,
E.
Pereyra
, and
N.
Ratkovich
, “
Analysis of two-phase gas-liquid flow in an Electric Submersible Pump using A CFD approach
,”
Geoenergy Sci. Eng.
233
,
212510
(
2024
).
20.
Z.
Ge
,
D.
He
,
R.
Huang
,
J.
Zuo
, and
X.
Luo
, “
Application of CFD-PBM coupling model for analysis of gas-liquid distribution characteristics in centrifugal pump
,”
J. Pet. Sci. Eng.
194
,
107518
(
2020
).
21.
S.
Tao
,
G.
Shi
,
Y.
Xiao
,
Z.
Huang
, and
H.
Wen
, “
Effect of operating parameters on the coalescence and breakup of bubbles in a multiphase pump based on a CFD-PBM coupled model
,”
J. Mar. Sci. Eng.
10
,
1693
(
2022
).
22.
P. K.
Bhowmik
and
J. P.
Schlegel
, “
Multicomponent gas mixture parametric CFD study of condensation heat transfer in small modular reactor system safety
,”
Exp. Comput. Multiphase Flow
5
,
15
(
2023
).
23.
A. V.
Praseeja
and
N.
Sajikumar
, “
Numerical simulation on LNAPL migration in vadose zone and its prevention using natural fibre
,”
Exp. Comput. Multiphase Flow
5
,
53
(
2023
).
24.
S.
Li
,
P.
Apanasevich
,
D.
Lucas
, and
Y.
Liao
, “
Euler-Euler CFD simulation of high velocity gas injection at pool scrubbing conditions
,”
Exp. Comput. Multiphase Flow
5
,
365
(
2023
).
25.
X.
Luo
,
H.
Xie
,
J.
Feng
,
Z.
Ge
, and
G.
Zhu
, “
Influence of the balance hole on the performance of a gas–liquid two–phase centrifugal pump
,”
Ocean Eng.
244
,
110316
(
2022
).
26.
A. A.
Dehghan
,
M. H.
Shojaeefard
, and
M.
Roshanaei
, “
Exploring a new criterion to determine the onset of cavitation in centrifugal pumps from energy-saving standpoint; experimental and numerical investigation
,”
Energy
293
,
130681
(
2024
).
27.
J.
Hang
,
L.
Bai
,
L.
Zhou
,
L.
Jiang
,
W.
Shi
, and
R.
Agarwal
, “
Inter-stage energy characteristics of electrical submersible pump under gassy conditions
,”
Energy
256
,
124624
(
2022
).
28.
C.-H.
Li
,
X.-T.
Wu
,
X.-Q.
Luo
,
J.-J.
Feng
, and
G.-J.
Zhu
, “
Investigation on the entropy production distribution in a multiphase pump considering gas–liquid two-phase velocity slip
,”
Phys. Fluids
35
,
103306
(
2023
).
29.
Z.-G.
Ge
,
X.-Q.
Luo
,
J.-J.
Feng
,
G.-J.
Zhu
,
D.-H.
He
, and
G.-K.
Wu
, “
Multiobjective and multicondition optimization for a gas–liquid mixed-flow pump based on a three-dimensional inverse design
,”
Phys. Fluids
35
,
063328
(
2023
).
30.
H.
Quan
,
X.
Yang
,
Y.
Li
,
Y.
Du
,
K.
Song
,
X.
Liu
, and
C.
Sun
, “
Research on energy recovery and gas–liquid separation characteristics in diffuser of Helico-Axial Multiphase Pump
,”
Phys. Fluids
35
,
055125
(
2023
).
31.
Y.
Yang
,
H.
Wang
,
C.
Wang
,
L.
Zhou
,
L.
Ji
,
Y.
Yang
,
W.
Shi
, and
R. K.
Agarwal
, “
An entropy efficiency model and its application to energy performance analysis of a multi-stage electric submersible pump
,”
Energy
288
,
129741
(
2024
).
32.
T.
Schäfer
,
A.
Bieberle
,
M.
Neumann
, and
U.
Hampel
, “
Application of gamma-ray computed tomography for the analysis of gas holdup distributions in centrifugal pumps
,”
Flow Meas. Instrum.
46
,
262
(
2015
).
33.
M.
Neumann
,
T.
Schäfer
,
A.
Bieberle
, and
U.
Hampel
, “
An experimental study on the gas entrainment in horizontally and vertically installed centrifugal pumps
,”
J. Fluids Eng.
138
,
091301
(
2016
).
34.
H.
Zhu
,
J.
Zhu
, and
H.-Q.
Zhang
, “
Mechanistic modeling of gas effect on Multi-stage Electrical submersible pump (ESP) performance with experimental validation
,”
Chem. Eng. Sci.
252
,
117288
(
2022
).
35.
K.
Minemura
,
T.
Uchiyama
,
S.
Shoda
, and
K.
Egashira
, “
Prediction of air-water two-phase flow performance of a centrifugal pump based on one-dimensional two-fluid model
,”
J. Fluids Eng.
120
,
327
(
1998
).
36.
R.
Sachdeva
,
D. R.
Doty
, and
Z.
Schmidt
, “
Performance of electric submersible pumps in gassy wells
,”
SPE Prod. Facil.
9
,
55
(
1994
).
37.
D.
Sun
and
M.
Prado
, “
Modeling gas-liquid head performance of electrical submersible pumps
,”
ASME. J. Pressure Vessel Technol.
127
(
1
),
31
38
(
2005
).
38.
V.
Estevam
, “
A phenomenological analysis about centrifugal pump in two phase flow operation
,” Ph.D. thesis (
Universidade Estadual de Campinas
,
2002
).
39.
E.
Chisely
,
Two-Phase Flow Centrifugal Pump Performance
(
Idaho State University
,
1997
).
40.
H.
Pineda
,
J.
Biazussi
,
F.
López
,
B.
Oliveira
,
R. D. M.
Carvalho
,
A. C.
Bannwart
, and
N.
Ratkovich
, “
Phase distribution analysis in an Electrical Submersible Pump (ESP) inlet handling water–air two-phase flow using Computational Fluid Dynamics (CFD)
,”
J. Pet. Sci. Eng.
139
,
49
(
2016
).
41.
J.
Zhu
and
H.-Q.
Zhang
, “
Mechanistic modeling and numerical simulation of in-situ gas void fraction inside ESP impeller
,”
J. Nat. Gas Sci. Eng.
36
,
144
(
2016
).
42.
L. C.
Zapata
,
Rotational Speed Effects on ESP Two-Phase Performance
(
The University of Tulsa
,
2003
).
43.
Z.
Yu
,
B.
Zhu
, and
S.
Cao
, “
Interphase force analysis for air-water bubbly flow in a multiphase rotodynamic pump
,”
Eng. Comput.
32
,
2166
(
2015
).
44.
Y.
Chen
,
A.
Patil
,
Y.
Chen
,
C.
Bai
,
Y.
Wang
, and
G.
Morrison
, “
Numerical study on the first stage head degradation in an electrical submersible pump with population balance model
,”
J. Energy Resour. Technol.
141
,
022003
(
2019
).
45.
W.
Monte Verde
,
J. L.
Biazussi
,
N. A.
Sassim
, and
A. C.
Bannwart
, “
Experimental study of gas-liquid two-phase flow patterns within centrifugal pumps impellers
,”
Exp. Therm. Fluid Sci.
85
,
37
(
2017
).
46.
J.
Caridad
,
M.
Asuaje
,
F.
Kenyery
,
A.
Tremante
, and
O.
Aguillón
, “
Characterization of a centrifugal pump impeller under two-phase flow conditions
,”
J. Pet. Sci. Eng.
63
,
18
(
2008
).
47.
J.
Caridad
and
F.
Kenyery
, “
CFD analysis of electric submersible pumps (ESP) handling two-phase mixtures
,”
J. Energy Resour. Technol.
126
,
99
(
2004
).
48.
L.
Zhang
,
B.
Ge
,
F.
Meng
,
Y.
Song
, and
J.
Liu
, “
Study on dynamic characteristics of centrifugal pump with the development of cavitation under low temperature conditions
,”
J. Braz. Soc. Mech. Sci. Eng.
46
,
335
(
2024
).
49.
Y.
Taitel
and
A. E.
Dukler
, “
A model for predicting flow regime transitions in horizontal and near horizontal gas‐liquid flow
,”
AlChE. J.
22
,
47
(
1976
).
50.
S.
Agrawal
,
G. A.
Gregory
, and
G. W.
Govier
, “
An analysis of horizontal stratified two phase flow in pipes
,”
Can. J. Chem. Eng.
51
,
280
(
1973
).
You do not currently have access to this content.