Herein, we used the fictitious domain method to numerically investigate the lateral migration and rotation of an oblate spheroidal particle in a square duct filled with Oldroyd-B fluids. We adopted Reynolds numbers ranging from 25 to 100 and Weissenberg numbers from 0.01 to 0.50. At low to moderate Weissenberg numbers (Wi ≤ 0.50), viscous forces remain dominant in particle motion. Additionally, we considered the effects of initial lateral position, orientation, and blocking ratio on particle dynamics. The results indicate that for flow in square channels with finite fluid inertia, as Wi increases, the elastic effects gradually strengthen, causing the equilibrium position of the particles to shift from near the centerline of the channel toward the diagonal. Notably, under significant fluid elasticity conditions, additional equilibrium positions emerge in the corners of the channel. When released with their x0y0 plane (containing the two longest axes of the oblate spheroid) parallel to the x–y plane (duct cross section) of the flow field, particles exhibited three distinct motion modes: tumbling, rolling, and kayaking. Tumbling was influenced by fluid inertia and corner attraction, which exhibited transitions to rolling or kayaking. The study also emphasized that the initial orientation of the particles impacted their sustained tumbling under low inertial flows. In addition, the blockage ratio (the ratio of the equivalent diameter of the particle to the duct height) mainly affected the equilibrium positions, and particles with a blockage ratio β ≤ 0.125 were readily attracted to the corners.

1.
Q.
Zhao
,
D.
Yuan
,
J.
Zhang
, and
W.
Li
, “
A review of secondary flow in inertial microfluidics
,”
Micromachines
11
(
5
),
461
(
2020
).
2.
W.
Tang
,
S.
Zhu
,
D.
Jiang
,
L.
Zhu
,
J.
Yang
, and
N.
Xiang
, “
Channel innovations for inertial microfluidics
,”
Lab Chip
20
(
19
),
3485
3502
(
2020
).
3.
T.
Peng
,
J.
Qiang
, and
S.
Yuan
, “
Sheathless inertial particle focusing methods within microfluidic devices: A review
,”
Front. Bioeng. Biotechnol.
11
,
1331968
(
2024
).
4.
H.
Fallahi
,
J.
Zhang
,
J.
Nicholls
,
H. P.
Phan
, and
N. T.
Nguyen
, “
Stretchable inertial microfluidic device for tunable particle separation
,”
Anal. Chem.
92
(
18
),
12473
12480
(
2020
).
5.
Z.
Zhao
,
A.
Ukidve
,
J.
Kim
, and
S.
Mitragotri
, “
Targeting strategies for tissue-specific drug delivery
,”
Cell
181
(
1
),
151
167
(
2020
).
6.
Z.
Wang
and
J.
Zhe
, “
Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves
,”
Lab Chip
11
(
7
),
1280
1285
(
2011
).
7.
K.
Yiannacou
and
V.
Sariola
, “
Controlled manipulation and active sorting of particles inside microfluidic chips using bulk acoustic waves and machine learning
,”
Langmuir
37
(
14
),
4192
4199
(
2021
).
8.
M.
Nordlund
,
S. P.
Fernberg
, and
T. S.
Lundström
, “
Particle deposition mechanisms during processing of advanced composite materials
,”
Composites, Part A
38
(
10
),
2182
2193
(
2007
).
9.
S. H.
Yum
,
W. I.
Lee
, and
S. M.
Kim
, “
Particle filtration and distribution during the liquid composite molding process for manufacturing particles containing composite materials
,”
Composites, Part A
90
,
330
339
(
2016
).
10.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Inertial microfluidics for continuous particle filtration and extraction
,”
Microfluid. Nanofluid.
7
,
217
226
(
2009
).
11.
N. T.
Nguyen
,
S. A. M.
Shaegh
,
N.
Kashaninejad
, and
D. T.
Phan
, “
Design, fabrication and characterization of drug delivery systems based on lab-on-a-chip technology
,”
Adv. Drug Delivery Rev.
65
(
11–12
),
1403
1419
(
2013
).
12.
X.
Wang
,
C.
Liedert
,
R.
Liedert
, and
I.
Papautsky
, “
A disposable, roll-to-roll hot-embossed inertial microfluidic device for size-based sorting of microbeads and cells
,”
Lab Chip
16
(
10
),
1821
1830
(
2016
).
13.
A. R.
Wheeler
,
W. R.
Throndset
,
R. J.
Whelan
,
A. M.
Leach
,
R. N.
Zare
,
Y. H.
Liao
,
K.
Farrell
,
I. D.
Manger
, and
A.
Daridon
, “
Microfluidic device for single-cell analysis
,”
Anal. Chem.
75
(
14
),
3581
3586
(
2003
).
14.
G.
Segre
and
A.
Silberberg
, “
Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation
,”
J. Fluid Mech.
14
(
1
),
136
157
(
1962
).
15.
B. P.
Ho
and
L.
Leal
, “
Inertial migration of rigid spheres in two-dimensional unidirectional flows
,”
J. Fluid Mech.
65
(
2
),
365
364
(
1974
).
16.
D.
Di Carlo
,
D.
Irimia
,
R. G.
Tompkins
, and
M.
Toner
, “
Continuous inertial focusing, ordering, and separation of particles in microchannels
,”
Proc. Natl. Acad. Sci. U.S.A.
104
(
48
),
18892
18897
(
2007
).
17.
A. A. S.
Bhagat
,
S. S.
Kuntaegowdanahalli
, and
I.
Papautsky
, “
Continuous particle separation in spiral microchannels using dean flows and differential migration
,”
Lab Chip
8
(
11
),
1906
1914
(
2008
).
18.
Y. W.
Kim
and
J. Y.
Yoo
, “
Two-phase flow laden with spherical particles in a microcapillary
,”
Int. J. Multiphase Flow
36
(
6
),
460
466
(
2010
).
19.
N.
Xiang
,
Z.
Shi
,
W.
Tang
,
D.
Huang
,
X.
Zhang
, and
Z.
Ni
, “
Improved understanding of particle migration modes in spiral inertial microfluidic devices
,”
RSC Adv.
5
(
94
),
77264
77273
(
2015
).
20.
B. A. J. C.
Chun
and
A. J. C.
Ladd
, “
Inertial migration of neutrally buoyant particles in a square duct: An investigation of multiple equilibrium positions
,”
Phys. Fluids
18
(
3
),
031704
(
2006
).
21.
Y. S.
Choi
,
K. W.
Seo
, and
S. J.
Lee
, “
Lateral and cross-lateral focusing of spherical particles in a square microchannel
,”
Lab Chip
11
(
3
),
460
465
(
2011
).
22.
M.
Abbas
,
P.
Magaud
,
Y.
Gao
, and
S.
Geoffroy
, “
Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers
,”
Phys. Fluids
26
(
12
),
123301
(
2014
).
23.
N.
Nakagawa
,
T.
Yabu
,
R.
Otomo
,
A.
Kase
,
M.
Makino
,
T.
Itano
, and
M.
Sugihara-Seki
, “
Inertial migration of a spherical particle in laminar square channel flows from low to high Reynolds numbers
,”
J. Fluid Mech.
779
,
776
793
(
2015
).
24.
K.
Miura
,
T.
Itano
, and
M.
Sugihara-Seki
, “
Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels
,”
J. Fluid Mech.
749
,
320
330
(
2014
).
25.
J.
Zhou
and
I.
Papautsky
, “
Fundamentals of inertial focusing in microchannels
,”
Lab Chip
13
(
6
),
1121
1132
(
2013
).
26.
C.
Liu
,
G.
Hu
,
X.
Jiang
, and
J.
Sun
, “
Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers
,”
Lab Chip
15
(
4
),
1168
1177
(
2015
).
27.
I.
Lashgari
,
M. N.
Ardekani
,
I.
Banerjee
,
A.
Russom
, and
L.
Brandt
, “
Inertial migration of spherical and oblate particles in straight ducts
,”
J. Fluid Mech.
819
,
540
561
(
2017
).
28.
A. M.
Leshansky
,
A.
Bransky
,
N.
Korin
, and
U.
Dinnar
, “
Tunable nonlinear viscoelastic “focusing” in a microfluidic device
,”
Phys. Rev. Lett.
98
(
23
),
234501
(
2007
).
29.
M.
Trofa
,
G.
D'Avino
,
M. A.
Hulsen
,
F.
Greco
, and
P. L.
Maffettone
, “
Numerical simulations of the dynamics of a slippery particle in Newtonian and viscoelastic fluids subjected to shear and Poiseuille flows
,”
J. Non-Newtonian Fluid Mech.
228
,
46
54
(
2016
).
30.
E. J.
Lim
,
T. J.
Ober
,
J. F.
Edd
,
S. P.
Desai
,
D.
Neal
,
K. W.
Bong
,
P. S.
Doyle
,
G. H.
McKinley
, and
M.
Toner
, “
Inertio-elastic focusing of bioparticles in microchannels at high throughput
,”
Nat. Commun.
5
(
1
),
4120
(
2014
).
31.
K. W.
Seo
,
Y. J.
Kang
, and
S. J.
Lee
, “
Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids
,”
Phys. Fluids
26
(
6
),
063301
(
2014
).
32.
B.
Kim
and
J. M.
Kim
, “
Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel
,”
Biomicrofluidics
10
(
2
),
024111
(
2016
).
33.
S.
Yang
,
J. Y.
Kim
,
S. J.
Lee
,
S. S.
Lee
, and
J. M.
Kim
, “
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel
,”
Lab Chip
11
(
2
),
266
273
(
2011
).
34.
G.
Li
,
G. H.
McKinley
, and
A. M.
Ardekani
, “
Dynamics of particle migration in channel flow of viscoelastic fluids
,”
J. Fluid Mech.
785
,
486
505
(
2015
).
35.
M.
Trofa
,
M.
Vocciante
,
G.
D'Avino
,
M. A.
Hulsen
,
F.
Greco
, and
P. L.
Maffettone
, “
Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow
,”
Comput. Fluids
107
,
214
223
(
2015
).
36.
Z.
Yu
,
P.
Wang
,
J.
Lin
, and
H. H.
Hu
, “
Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids
,”
J. Fluid Mech.
868
,
316
340
(
2019
).
37.
X.
Lu
and
X.
Xuan
, “
Elasto-inertial pinched flow fractionation for continuous shape-based particle separation
,”
Anal. Chem.
87
(
22
),
11523
11530
(
2015
).
38.
C. W.
Tai
and
V.
Narsimhan
, “
Experimental and theoretical studies of cross-stream migration of non-spherical particles in a quadratic flow of a viscoelastic fluid
,”
Soft Matter
18
(
24
),
4613
4624
(
2022
).
39.
C. W.
Tai
,
S.
Wang
, and
V.
Narsimhan
, “
Cross-stream migration of non-spherical particles in a second-order fluid–theories of particle dynamics in arbitrary quadratic flows
,”
J. Fluid Mech.
895
,
A6
(
2020
).
40.
C. W.
Tai
,
S.
Wang
, and
V.
Narsimhan
, “
Cross‐stream migration of nonspherical particles in second‐order fluid flows: Effect of flow profiles
,”
AlChE J.
66
(
12
),
e17076
(
2020
).
41.
S.
Wang
,
C. W.
Tai
, and
V.
Narsimhan
, “
Cross-stream migration of non-spherical particles in a general second-order fluid flows
,” in
APS Division of Fluid Dynamics (Fall)
,
2020
.
42.
A.
Langella
,
G.
Franzino
,
P. L.
Maffettone
,
D.
Larobina
, and
G.
D'Avino
, “
Dynamics of non-spherical particles in viscoelastic fluids flowing in a microchannel
,”
Soft Matter
19
(
48
),
9541
9549
(
2023
).
43.
M.
Cooley
,
A.
Sarode
,
M.
Hoore
,
D. A.
Fedosov
,
S.
Mitragotri
, and
A. S.
Gupta
, “
Influence of particle size and shape on their margination and wall-adhesion: Implications in drug delivery vehicle design across nano-to-micro scale
,”
Nanoscale
10
(
32
),
15350
15364
(
2018
).
44.
G. B.
Jeffery
, “
The motion of ellipsoidal particles immersed in a viscous fluid
,”
Proc. R. Soc. London, Ser. A
102
(
715
),
161
179
(
1922
).
45.
W. R.
Hwang
,
M. A.
Hulsen
, and
H. E.
Meijer
, “
Direct simulations of particle suspensions in a viscoelastic fluid in sliding bi-periodic frames
,”
J. Non-Newtonian Fluid Mech.
121
(
1
),
15
33
(
2004
).
46.
D. Z.
Gunes
,
R.
Scirocco
,
J.
Mewis
, and
J.
Vermant
, “
Flow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheology
,”
J. Non-Newtonian Fluid Mech.
155
(
1–2
),
39
50
(
2008
).
47.
V. S.
Doan
,
D. O.
Kim
,
C.
Snoeyink
,
Y.
Sun
, and
S.
Shin
, “
Shape-and orientation-dependent diffusiophoresis of colloidal ellipsoids
,”
Phys. Rev. E
107
(
5
),
L052602
(
2023
).
48.
D.
Saccone
,
M.
De Marchis
,
B.
Milici
, and
C.
Marchioli
, “
Transport of inertial ellipsoidal particles in turbulent flow over rough walls
,”
Phys. Rev. Fluids
8
(
8
),
084303
(
2023
).
49.
R.
Glowinski
,
T. W.
Pan
,
T. I.
Hesla
, and
D. D.
Joseph
, “
A distributed Lagrange multiplier/fictitious domain method for particulate flows
,”
Int. J. Multiphase Flow
25
(
5
),
755
794
(
1999
).
50.
Z.
Yu
and
X.
Shao
, “
A direct-forcing fictitious domain method for particulate flows
,”
J. Comput. Phys.
227
(
1
),
292
314
(
2007
).
51.
B.
Van Leer
, “
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method
,”
J. Comput. Phys.
32
(
1
),
101
136
(
1979
).
52.
G.
D'Avino
,
G.
Romeo
,
M. M.
Villone
,
F.
Greco
,
P. A.
Netti
, and
P. L.
Maffettone
, “
Single line particle focusing induced by viscoelasticity of the suspending liquid: Theory, experiments and simulations to design a micropipe flow-focuser
,”
Lab Chip
12
(
9
),
1638
1645
(
2012
).
53.
N.
Lukerchenko
,
Y.
Kvurt
,
I.
Keita
,
Z.
Chara
, and
P.
Vlasak
, “
Drag force, drag torque, and Magnus force coefficients of rotating spherical particle moving in fluid
,”
Part. Sci. Technol.
30
(
1
),
55
67
(
2012
).
54.
B. P.
Ho
and
L. G.
Leal
, “
Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid
,”
J. Fluid Mech.
76
(
4
),
783
799
(
1976
).
You do not currently have access to this content.