The Euler–Lagrange method is a great way for multiphase bubble flow simulation, the detailed information of bubbles can be effortlessly obtained, and it is helpful for the efficiency and safety of different industry processes. Traditionally, the computational fluid dynamics-discrete bubble model (CFD-DBM) method has always been used to simulate this flow process. Nevertheless, the ability of the traditional CFD-DBM method is significantly limited in terms of the size ratio between the grid and bubble, where the grid size must be larger than the bubble size. In reality, the bubble may be larger than the grid and the grid/bubble size ratio can be very large due to the effects of complex bubble dynamics (such as the bubble breakup and coalescence) and complex internal flows. To address this issue, an improved CFD-DBM method is proposed in this study, which can be used for the simulation with a wide grid/bubble size ratio in gas–liquid–bubble multiphase simulation, and the volume of fluid (VOF) method is applied to capture the interface between gas and liquid phases. A gradient-based interpolation method is employed to reconstruct the liquid velocity around the target bubble when the grid size is much larger than the bubble size. If the bubble size is comparable with or larger than the grid size, the interphase force correction and the field smoothing will be carried out within a spherical support area. Subsequently, the proposed model is validated by the comparison with a bubble column experiment, in terms of the bubble size distribution and bubble vertical velocity. The results demonstrate the high accuracy of the new method. Finally, the influence of different parameters including normal spring stiffness, critical Weber number, and the range of the spherical support area on the bubble flow is investigated.

1.
S.
Yan
,
X.
Wang
,
L.
Zhu
,
X.
Zhang
, and
Z.
Luo
, “
Mechanisms and modeling of bubble dynamic behaviors and mass transfer under gravity: A review
,”
Chem. Eng. Sci.
277
,
118854
(
2023
).
2.
M. E.
McCormick
and
R.
Bhattacharyya
, “
Drag reduction of a submersible hull by electrolysis
,”
Nav. Eng. J.
85
(
2
),
11
16
(
1973
).
3.
X.
Zhang
,
J.
Wang
, and
D.
Wan
, “
Euler–Lagrange study of bubble drag reduction in turbulent channel flow and boundary layer flow
,”
Phys. Fluids
32
(
2
),
027101
(
2020
).
4.
J.
Zhang
,
J.
Zhang
,
X.
Dong
, and
Y.
Feng
, “
Flow regime transition and bubble behavior in gas-liquid two-phase impinging jet reactor
,”
Chem. Eng. Res. Des.
201
,
275
285
(
2024
).
5.
A. P. S.
Freire
,
D. D.
Miranda
,
L. M. S.
Luz
, and
G. F. M.
França
, “
Bubble plumes and the Coanda effect
,”
Int. J. Multiphase Flow
28
(
8
),
1293
1310
(
2002
).
6.
P.
Khomwachirakul
,
S.
Devahastin
,
T.
Swasdisevi
, and
S.
Soponronnarit
, “
Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM
,”
Drying Technol.
34
(
4
),
403
419
(
2016
).
7.
Y.
Wu
,
Q.
Li
, and
F.
Li
, “
Desulfurization in the gas-continuous impinging stream gas–liquid reactor
,”
Chem. Eng. Sci.
62
(
6
),
1814
1824
(
2007
).
8.
M. M.
Hoque
,
S.
Mitra
, and
G.
Evans
, “
Bubble size distribution and turbulence characterization in a bubbly flow in the presence of surfactant
,”
Exp. Therm. Fluid Sci.
155
,
111199
(
2024
).
9.
F.
Tan
,
T.
Wu
,
L.
Gao
,
F.
Li
,
Z.
He
,
Y.
Li
, and
J.
Li
, “
Numerical investigation of bubble behavior and multiphase flow in ladle using purging plug with inclined slit designs
,”
Int. J. Multiphase Flow
172
,
104709
(
2024
).
10.
H.
Xia
,
Z.
Zhang
,
J.
Liu
,
X.
Ao
,
S.
Lin
, and
Y.
Yang
, “
Modeling and numerical study of particle-bubble-liquid flows using a front-tracking and discrete-element method
,”
Appl. Math. Modell.
114
,
525
543
(
2023
).
11.
L.
Li
,
C.
Pei
,
Z.
Wang
,
Z.
Lin
,
X.
Li
, and
Z.
Zhu
, “
Assessment of cavitation erosion risk by Eulerian–Lagrangian multiscale modeling
,”
Int. J. Mech. Sci.
262
,
108735
(
2024
).
12.
B.
Tian
,
B.
Huang
, and
L.
Li
, “
Investigation of transient sheet/cloud cavitating flow dynamics from multiscale perspective
,”
Phys. Fluids
35
(
7
),
077115
(
2023
).
13.
L.
Li
,
Z.
Wang
,
X.
Li
,
Y.
Wang
, and
Z.
Zhu
, “
Very large eddy simulation of cavitation from inception to sheet/cloud regimes by a multiscale model
,”
China Ocean Eng.
35
(
3
),
361
371
(
2021
).
14.
Y.
Son
,
C.-O.
Ahn
, and
S.
Lee
, “
Using a Lagrangian-Lagrangian approach for studying flow behavior inside a bubble column
,”
Nucl. Eng. Technol.
55
(
12
),
4395
4407
(
2023
).
15.
M. W.
Hlawitschka
,
P.
Kováts
,
B.
Dönmez
,
K.
Zähringer
, and
H. J.
Bart
, “
Bubble motion and reaction in different viscous liquids
,”
Exp. Comput. Multiphase Flow
4
(
1
),
26
38
(
2022
).
16.
Y. M.
Lau
,
K. T.
Sujatha
,
M.
Gaeini
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Experimental study of the bubble size distribution in a pseudo-2D bubble column
,”
Chem. Eng. Sci.
98
,
203
211
(
2013
).
17.
L.
Li
,
X.
Li
,
Z.
Zhu
, and
B.
Li
, “
Numerical modeling of multiphase flow in gas stirred ladles: From a multiscale point of view
,”
Powder Technol.
373
,
14
25
(
2020
).
18.
Z.
Khani
and
G. S.
Patience
, “
Liquid atomization into gas–solid fluidized beds—A review spanning the micro- to macro-scale
,”
Powder Technol.
434
,
119242
(
2024
).
19.
H.
Ma
,
Z.
Liu
,
L.
Zhou
,
J.
Du
, and
Y.
Zhao
, “
Numerical investigation of the particle flow behaviors in a fluidized-bed drum by CFD-DEM
,”
Powder Technol.
429
,
118891
(
2023
).
20.
L.
Li
,
B.
Jiang
,
G.
Wei
,
X.
Li
, and
Z.
Zhu
, “
Multiscale multiphase flow simulations using interface capturing and Lagrangian particle tracking
,”
Phys. Fluids
34
(
12
),
121801
(
2022
).
21.
H.
Liu
and
M.
Li
, “
Two-compartmental population balance modeling of a pulsed spray fluidized bed granulation based on computational fluid dynamics (CFD) analysis
,”
Int. J. Pharm.
475
(
1–2
),
256
269
(
2014
).
22.
Z.
Wang
,
L.
Li
,
X.
Li
,
Z.
Zhu
,
S.
Yang
, and
G.
Yang
, “
Investigation on multiscale features of cavitating flow in convergent-divergent test section using Eulerian–Lagrangian method
,”
Int. J. Mech. Sci.
238
,
107853
(
2023
).
23.
L.
Ji
,
K.
Chu
,
S.
Kuang
,
J.
Chen
, and
A.
Yu
, “
Modeling the multiphase flow in hydrocyclones using the coarse-grained volume of fluid—Discrete element method and mixture-discrete element method approaches
,”
Ind. Eng. Chem. Res.
57
,
9641
(
2018
).
24.
M.
Vångö
,
S.
Pirker
, and
T.
Lichtenegger
, “
Unresolved CFD–DEM modeling of multiphase flow in densely packed particle beds
,”
Appl. Math. Modell.
56
,
501
516
(
2018
).
25.
L.
Zhou
and
Y.
Zhao
, “
CFD-DEM simulation of fluidized bed with an immersed tube using a coarse-grain model
,”
Chem. Eng. Sci.
231
,
116290
(
2021
).
26.
W.
Zhong
,
A.
Yu
,
X.
Liu
,
Z.
Tong
, and
H.
Zhang
, “
DEM/CFD-DEM modelling of non-spherical particulate systems: Theoretical developments and applications
,”
Powder Technol.
302
,
108
152
(
2016
).
27.
K.
Wu
,
E.
Zhang
,
J.
Xu
,
Z.
Yuan
,
W.
Zhu
,
B.
Li
,
L.
Wang
, and
D.
Luo
, “
Three-dimensional simulation of gas-solid flow in a fluidised bed with flexible ribbon particles
,”
Int. J. Multiphase Flow
124
,
103181
(
2020
).
28.
S.
Shrestha
,
S.
Kuang
,
A.
Yu
, and
Z.
Zhou
, “
Bubble dynamics in bubbling fluidized beds of ellipsoidal particles
,”
AIChE J.
65
(
11
),
e16736
(
2019
).
29.
M.
Sommerfeld
,
E.
Bourloutski
, and
D.
Bröder
, “
Euler/Lagrange calculations of bubbly flows with consideration of bubble coalescence
,”
Can. J. Chem. Eng.
81
(
3–4
),
508
518
(
2003
).
30.
D.
Darmana
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Parallelization of an Euler–Lagrange model using mixed domain decomposition and a mirror domain technique: Application to dispersed gas–liquid two-phase flow
,”
J. Comput. Phys.
220
(
1
),
216
248
(
2006
).
31.
D.
Jain
,
J. A. M.
Kuipers
, and
N. G.
Deen
, “
Numerical study of coalescence and breakup in a bubble column using a hybrid volume of fluid and discrete bubble model approach
,”
Chem. Eng. Sci.
119
,
134
146
(
2014
).
32.
Y. M.
Lau
,
W.
Bai
,
N. G.
Deen
, and
J. A. M.
Kuipers
, “
Numerical study of bubble break-up in bubbly flows using a deterministic Euler–Lagrange framework
,”
Chem. Eng. Sci.
108
,
9
22
(
2014
).
33.
X.
Zhang
,
J.
Wang
, and
D.
Wan
, “
Euler–Lagrange study of bubble breakup and coalescence in a turbulent boundary layer for bubble drag reduction
,”
Phys. Fluids
33
(
3
),
037105
(
2021
).
34.
K.
Zhang
,
S.
Wang
, and
Y.
He
, “
Investigation of interphase drag force affected by clouded bubble via a computational fluid dynamics–discrete element method approach
,”
Ind. Eng. Chem. Res.
60
(
44
),
16068
16077
(
2021
).
35.
L.
Li
,
Z.
Wang
,
X.
Li
, and
Z.
Zhu
, “
Multiscale modeling of tip-leakage cavitating flows by a combined volume of fluid and discrete bubble model
,”
Phys. Fluids
33
(
6
),
062104
(
2021
).
36.
L.
Li
,
W.
Xu
,
B.
Jiang
,
X.
Li
, and
Z.
Zhu
, “
A multiscale Eulerian–Lagrangian cavitating flow solver in OpenFOAM
,”
SoftwareX
21
,
101304
(
2023
).
37.
L.
Li
,
W.
Xu
,
X.
Li
,
X.
Sun
,
G.
Yang
, and
Z.
Zhu
, “
Multiscale and adaptive modeling of bubbling flow and slag layer behavior in gas-stirring vessels
,”
JOM
75
(
4
),
1357
1370
(
2023
).
38.
L.
Zhou
,
T.
Li
,
H.
Ma
,
Z.
Liu
,
Y.
Dong
, and
Y.
Zhao
, “
Development and verification of an unresolved CFD-DEM method applicable to different-sized grids
,”
Powder Technol.
432
,
119127
(
2024
).
39.
S.
Golshan
,
R.
Sotudeh-Gharebagh
,
R.
Zarghami
,
N.
Mostoufi
,
B.
Blais
, and
J. A. M.
Kuipers
, “
Review and implementation of CFD-DEM applied to chemical process systems
,”
Chem. Eng. Sci.
221
,
115646
(
2020
).
40.
H.
Ma
,
Y.
Zhao
, and
Y.
Cheng
, “
CFD-DEM modeling of rod-like particles in a fluidized bed with complex geometry
,”
Powder Technol.
344
,
673
683
(
2019
).
41.
S.
Wang
,
K.
Luo
,
C.
Hu
, and
J.
Fan
, “
CFD-DEM study of the effect of ring baffles on system performance of a full-loop circulating fluidized bed
,”
Chem. Eng. Sci.
196
,
130
144
(
2019
).
42.
V. T.
Nguyen
,
C. H.
Song
,
B. U.
Bae
, and
D. J.
Euh
, “
Modeling of bubble coalescence and break-up considering turbulent suppression phenomena in bubbly two-phase flow
,”
Int. J. Multiphase Flow
54
,
31
42
(
2013
).
43.
M.
Sun
,
B.
Li
, and
L.
Li
, “
A multi-scale mathematical model of growth and coalescence of bubbles beneath the anode in an aluminum reduction cell
,”
Metall. Mater. Trans. B
49
(
5
),
2821
2834
(
2018
).
44.
H.
Takeda
,
N.
Esaki
,
K.
Doi
,
H.
Murakami
,
K.
Yamasaki
, and
Y.
Kawase
, “
Flow simulation in bubble columns in regard to bubble coalescence and break-up utilizing LES and DEM
,”
J. Chem. Eng. Jpn.
37
(
8
),
976
989
(
2004
).
45.
Z.
Liu
,
H.
Ma
, and
Y.
Zhao
, “
Comparative study of discrete element modeling of tablets using multi-spheres, multi-super-ellipsoids, and polyhedrons
,”
Powder Technol.
390
,
34
49
(
2021
).
46.
Z.
Liu
,
H.
Ma
,
L.
Zhou
,
Y.
Liu
,
Z.
Huang
,
X.
Liao
, and
Y.
Zhao
, “
DEM-DDM investigation of the tablet coating process using different particle shape models
,”
Ind. Eng. Chem. Res.
62
(
1
),
829
840
(
2023
).
47.
P. A.
Cundall
and
O. D. L.
Strack
, “
A discrete numerical model for granular assemblies
,”
Géotechnique
29
(
1
),
47
65
(
1979
).
48.
A.
Tomiyama
,
T.
Matsuoka
,
T.
Fukuda
, and
T.
Sakaguchi
, “
A simple numerical method for solving an incompressible two-fluid model in a general curvilinear coordinate system
,” in
Advances in Multiphase Flow
(
Elsevier
,
1995
), pp.
241
252
.
49.
A.
Tomiyama
,
A.
Sou
,
I.
Zun
,
N.
Kanami
, and
T.
Sakaguchi
, “
Effects of eotvos number and dimensionless liquid volumetric flux on lateral motion of a bubble in a laminar duct flow
,” in
Advances in Multiphase Flow
(
Elsevier
,
1995
), pp.
3
15
.
50.
A.
Tomiyama
,
H.
Tamai
,
I.
Zun
, and
S.
Hosokawa
, “
Transverse migration of single bubbles in simple shear flows
,”
Chem. Eng. Sci.
57
,
1849
1858
(
2002
).
51.
I.
Roghair
,
Y. M.
Lau
,
N. G.
Deen
,
H. M.
Slagter
,
M. W.
Baltussen
,
M.
Van Sint Annaland
, and
J. A. M.
Kuipers
, “
On the drag force of bubbles in bubble swarms at intermediate and high Reynolds numbers
,”
Chem. Eng. Sci.
66
(
14
),
3204
3211
(
2011
).
52.
P. G.
Saffman
, “
The lift on a small sphere in a slow shear flow
,”
J. Fluid Mech.
22
,
385
400
(
1965
).
53.
R.
Mei
, “
An approximate expression for the shear lift force on a spherical particle at finite Reynolds number
,”
Int. J. Multiphase Flow
18
(
1
),
145
147
(
1992
).
54.
Z.-S.
Mao
, “
Numerical evaluation of virtual mass force coefficient of single solid particles in acceleration
,”
Chin. J. Chem. Eng.
41
,
210
219
(
2022
).
55.
S.
Zoghlami
,
C.
Béguin
,
A.
Teyssedou
,
D.
Scott
,
L.
Bornard
, and
S.
Etienne
, “
Bubble cloud configuration effect on the added mass
,”
Phys. Fluids
33
(
5
),
053304
(
2021
).
56.
N. H.
Sagert
and
M. J.
Quinn
, “
The coalescence of H2S and CO2 bubbles in water
,”
Can. J. Chem. Eng.
54
(
5
),
392
398
(
1976
).
57.
C.
Tsouris
and
L. L.
Tavlarides
, “
Breakage and coalescence models for drops in turbulent dispersions
,”
AIChE J.
40
(
3
),
395
406
(
1994
).
58.
H.
Sovová
, “
Breakage and coalescence of drops in a batch stirred vessel—II comparison of model and experiments
,”
Chem. Eng. Sci.
36
(
9
),
1567
1573
(
1981
).
59.
F.
Lehr
,
M.
Millies
, and
D.
Mewes
, “
Bubble‐size distributions and flow fields in bubble columns
,”
AIChE J.
48
(
11
),
2426
2443
(
2002
).
60.
H.
Ma
,
L.
Zhou
,
Z.
Liu
,
M.
Chen
,
X.
Xia
, and
Y.
Zhao
, “
A review of recent development for the CFD-DEM investigations of non-spherical particles
,”
Powder Technol.
412
,
117972
(
2022
).
61.
L.
Zhou
and
Y.
Zhao
, “
Improvement of unresolved CFD-DEM by velocity field reconstruction on unstructured grids
,”
Powder Technol.
399
,
117104
(
2022
).
62.
J.
Chen
and
J.
Zhang
, “
A semi-resolved CFD-DEM coupling model using a two-way domain expansion method
,”
J. Comput. Phys.
469
,
111532
(
2022
).
63.
Z.
Xie
, “
A novel hybrid CFD-DEM method for high-fidelity multi-resolution modelling of cross-scale particulate flow
,”
Chem. Eng. J.
455
,
140731
(
2023
).
64.
M.
Sevik
and
S. H.
Park
, “
The splitting of drops and bubbles by turbulent fluid flow
,”
J. Fluids Eng.
95
(
1
),
53
60
(
1973
).
You do not currently have access to this content.