The Leidenfrost effect, a phenomenon where a droplet levitates on a heated surface due to rapid vaporization, has been extensively studied with various liquids. However, the behavior of binary mixtures, specifically those involving hydrogen peroxide (H2O2) and water, remains relatively unexplored. This study investigates such mixtures, focusing on the ejection dynamics of secondary droplets under different temperatures and solution concentrations. High-speed imaging is used to capture the evolution of droplets upon impacting a hot surface. The results reveal a significant increase in droplet fragmentation and ejection with increasing temperature and hydrogen peroxide concentration. Droplet ejection volume increased by a factor of 2.5 when the temperature was 60 °C over the Leidenfrost point, while it increased by a factor of 1.7 when comparing a solution of 10% wt. H2O2 up to a concentration of 50%. A comprehensive analysis of the observed phenomena is proposed. The impact of hydrogen peroxide's thermal decomposition on systems such as H2O2 vapor decontamination enclosures is revealed. The main difficulty in obtaining highly concentrated H2O2 gas is attributed to the Leidenfrost effect ejecting secondary droplets.

1.
J. G.
Leidenfrost
, “
On the fixation of water in diverse fire
,”
Int. J. Heat Mass Transfer
9
,
1153
1166
(
1966
).
2.
D.
Quéré
, “
Leidenfrost dynamics
,”
Annu. Rev. Fluid Mech.
45
,
197
215
(
2013
).
3.
D. W.
Erickson
and
G. A.
Williams
, “
Experimental studies of the cryogenic leidenfrost effect
,” UCLA REU Program (2005). Available: https://reu.physics.ucla.edu/common/papers/2005/david_erickson.pdf
4.
S.
Louhenkilpi
,
Continuous Casting of Steel
(
Elsevier Ltd
.,
2014
), Vol.
3
, pp.
373
434
.
5.
H.
Wu
,
W.
Cao
,
H.
Li
,
Z.
Shi
,
R.
Zhao
,
L.
Zhang
, and
X.
Li
, “
Wall temperature effects on ignition characteristics of liquid-phase spray impingement for heavy-duty diesel engine at low temperatures
,”
Combust. Sci. Technol.
195
,
456
471
(
2023
).
6.
M.
Fatouraie
,
M. S.
Wooldridge
,
B. R.
Petersen
, and
S. T.
Wooldridge
, “
Effects of ethanol on in-cylinder and exhaust gas particulate emissions of a gasoline direct injection spark ignition engine
,”
Energy Fuels
29
,
3399
3412
(
2015
).
7.
F.
Moreau
,
P.
Colinet
, and
S.
Dorbolo
, “
Explosive Leidenfrost droplets
,”
Phys. Rev. Fluids
4
,
013602
(
2019
).
8.
J. D.
Bernardin
and
I.
Mudawar
, “
The Leidenfrost point: Experimental study and assessment of existing models
,”
J. Heat Transfer
121
,
894
903
(
1999
).
9.
S.
Gavrilyuk
and
H.
Gouin
, “
Theoretical model of the Leidenfrost temperature
,”
Phys. Rev. E
106
,
055102
(
2022
).
10.
C.
Cai
,
I.
Mudawar
,
H.
Liu
, and
C.
Si
, “
Theoretical Leidenfrost point (LFP) model for sessile droplet
,”
Int. J. Heat Mass Transfer
146
,
118802
(
2020
).
11.
B.
Sobac
,
A.
Rednikov
,
S.
Dorbolo
, and
P.
Colinet
, “
Erratum: Leidenfrost effect: Accurate drop shape modeling and refined scaling laws [phys. Rev. E 90, 053011 (2014)]
,”
Phys. Rev. E
103
,
039901
(
2021
).
12.
I.
Chakraborty
,
M. V.
Chubynsky
, and
J. E.
Sprittles
, “
Computational modelling of leidenfrost drops
,”
J. Fluid Mech.
936
,
A12
(
2022
).
13.
C.
Hultman
,
A.
Hill
, and
G.
McDonnell
, “
The physical chemistry of decontamination with gaseous hydrogen peroxide
,”
Pharm. Eng.
27
,
22
32
(
2007
).
14.
J. S.
Mok
,
W. J.
Helms
,
J. C.
Sisco
, and
W. E.
Anderson
,
Decomposition and Vaporization Studies of Hydrogen Peroxide
(
AIAA
,
2002
), pp.
1
17
.
15.
X.
Huang
,
L.
Sheng
,
Y.
Lu
, and
S.
Li
, “
Atomization characteristics of hydrogen peroxide solutions in electrostatic field
,”
Micromachines
13
,
771
(
2022
).
16.
C.
Tang
,
M.
Qin
,
X.
Weng
,
X.
Zhang
,
P.
Zhang
,
J.
Li
, and
Z.
Huang
, “
Dynamics of droplet impact on solid surface with different roughness
,”
Int. J. Multiphase Flow
96
,
56
69
(
2017
).
17.
J.
Breitenbach
,
I. V.
Roisman
, and
C.
Tropea
, “
Drop collision with a hot, dry solid substrate: Heat transfer during nucleate boiling
,”
Phys. Rev. Fluids
2
,
074301
(
2017
).
18.
G.
Toussaint
, “
Chapter 2: Grids, connectivity and contour tracing
,” in
Music Information Retrieval
(
Computational Geometry Lab at McGill University
,
2010
), pp.
10
11
.
19.
G.
Welch
and
G.
Bishop
, “
An introduction to the Kalman filter
,” in
UNC Course
(
ACM
,
2006
), pp.
1
16
.
20.
J.
Munkres
, “
Algorithms for the assignment and transportation problems
,”
J. Soc. Ind. Appl. Math.
5
,
32
38
(
1957
).
21.
D.
Watling
,
C.
Ryle
,
M.
Parks
, and
M.
Christopher
, “
Theoretical analysis of the condensation of hydrogen peroxide gas and water vapour as used in surface decontamination
,”
PDA J. Pharm. Sci. Technol.
56
,
291
299
(
2002
).
22.
B.
Brooks
, “
Final report for the Bioquell hydrogen peroxide vapor (HPV) decontamination for reuse of N95 respirators
,”
Report No. HHSF223201400098C
(
2016
).
23.
T.
Bergman
,
A.
Lavine
,
F.
Incropera
, and
D.
DeWitt
,
Fundamentals of Heat and Mass Transfer
(
Wiley
,
2017
).
24.
M. R.
Panão
, “
Why drop size distributions in sprays fit the lognormal
,”
Phys. Fluids
35
,
011701
(
2023
).
25.
S. T.
Thoroddsen
,
K.
Takehara
, and
T. G.
Etoh
, “
Micro-splashing by drop impacts
,”
J. Fluid Mech.
706
,
560
570
(
2012
).
You do not currently have access to this content.