The granular mechanics of lunar and Martian regolith remain inadequately understood, impeding progress in successful exploration, landing, drilling, sampling, and construction activities on extraterrestrial surfaces. This study aims to bridge this knowledge gap by investigating the granular behavior of the lunar and Martian regolith under impact conditions. Impact cratering experiments were conducted for the lunar highlands, lunar mare, Martian regolith simulants (LHS-1, LMS-1, and MGS-1, respectively), and terrestrial silica sand with similar particle sizes as target granular materials, with a sphere projectile dropping at low velocities. A systematic analysis was undertaken to elucidate the influence of parameters, including the fall height of the projectile, impact velocity, kinetic energy of the projectile, porosity, cohesion, and internal friction angle, on the resulting crater depths. Our findings demonstrate that the crater depths of regolith layers of the lunar highlands and Martian surfaces are greater than those of the lunar mare regolith and terrestrial silica sand layers. For example, the crater depth of the lunar highland regolith layer is about two times greater than that of the terrestrial silica sand layer at an impact velocity of 40–70 cm/s. Additionally, our power-law scaling highlights less resistance to crater impact in the lunar and Martian regolith layers than in the terrestrial sand layer. Our study highlights a significant difference in granular behavior between the Earth's sand layer and the lunar and Martian regolith layers, providing valuable insights for future exploration, coring, drilling, and resource utilization endeavors on the lunar and Martian surfaces.

1.
P.
Lucey
,
R. L.
Korotev
,
J. J.
Gillis
,
L. A.
Taylor
,
D.
Lawrence
,
B. A.
Campbell
,
R.
Elphic
,
B.
Feldman
,
L. L.
Hood
,
D.
Hunten
,
M.
Mendillo
,
S.
Noble
,
J. J.
Papike
,
R. C.
Reedy
,
S.
Lawson
,
T.
Prettyman
,
O.
Gasnault
, and
S.
Maurice
, “
Understanding the lunar surface and space-moon interactions
,”
Rev Miner. Geochem.
60
,
83
219
(
2006
).
2.
L.
Zhang
,
Y.
Xu
,
R.
Liu
,
R.
Chen
,
R.
Bugiolacchi
, and
R.
Gao
, “
The dielectric properties of Martian regolith at the Tianwen-1 landing site
,”
Geophys. Res. Lett.
50
,
e2022GL102207
, https://doi.org/10.1029/2022GL102207 (
2023
).
3.
V.
Stamenković
,
L. W.
Beegle
,
K.
Zacny
,
D. D.
Arumugam
,
P.
Baglioni
,
N.
Barba
,
J.
Baross
,
M. S.
Bell
,
R.
Bhartia
,
J. G.
Blank
,
P. J.
Boston
,
D.
Breuer
,
W.
Brinckerhoff
,
M. S.
Burgin
,
I.
Cooper
,
V.
Cormarkovic
,
A.
Davila
,
R. M.
Davis
,
C.
Edwards
,
G.
Etiope
,
W. W.
Fischer
,
D. P.
Glavin
,
R. E.
Grimm
,
F.
Inagaki
,
J. L.
Kirschvink
,
A.
Kobayashi
,
T.
Komarek
,
M.
Malaska
,
J.
Michalski
,
B.
Ménez
,
M.
Mischna
,
D.
Moser
,
J.
Mustard
,
T. C.
Onstott
,
V. J.
Orphan
,
M. R.
Osburn
,
J.
Plaut
,
A. C.
Plesa
,
N.
Putzig
,
K. L.
Rogers
,
L.
Rothschild
,
M.
Russell
,
H.
Sapers
,
B. S.
Lollar
,
T.
Spohn
,
J. D.
Tarnas
,
M.
Tuite
,
D.
Viola
,
L. M.
Ward
,
B.
Wilcox
, and
R.
Woolley
, “
The next frontier for planetary and human exploration
,”
Nat. Astron.
3
(
2
),
116
120
(
2019
).
4.
J.
Tang
,
T.
Yang
,
X.
Chen
,
Z.
Zhang
,
Y.
Tian
,
W.
Zhang
, and
S.
Jiang
, “
Mechanical characteristics of lunar regolith drilling and coring and its crawling phenomenon: Analysis and validation
,”
Aerospace
9
(
11
),
709
(
2022
).
5.
D.
Knez
and
M. A. M.
Zamani
, “
A review of the geomechanics aspects in space exploration
,”
Energies
14
(
22
),
7522
(
2021
).
6.
Y.
Pang
,
T.
Zhang
,
H.
Wei
,
T.
Zeng
,
Y.
Zhang
,
G.
Mo
,
K.
Xu
,
S.
Yin
,
G.
Wang
,
X.
Zhang
,
X.
Lai
, and
X.
Ding
, “
Influence of lunar regolith compressibility on sampling performance of thick wall spiral drills
,”
Chin. J. Aeronaut.
36
(
2
),
350
362
(
2023
).
7.
J. M.
Long-Fox
,
Z. A.
Landsman
,
P. B.
Easter
,
C. A.
Millwater
, and
D. T.
Britt
, “
Geomechanical properties of lunar regolith simulants LHS-1 and LMS-1
,”
Adv. Space Res.
71
(
12
),
5400
5412
(
2023
).
8.
K.
Yin
,
Z.
Cheng
,
J.
Liu
, and
A.
Chen
, “
Shear properties of LHS-1 and LMS-1 Lunar regolith simulants
,”
Planet. Space Sci.
226
,
105630
(
2023
).
9.
K. M.
Cannon
,
D. T.
Britt
,
T. M.
Smith
,
R. F.
Fritsche
, and
D.
Batcheldor
, “
Mars global simulant MGS-1: A Rocknest-based open standard for basaltic martian regolith simulants
,”
Icarus
317
,
470
478
(
2019
).
10.
K. R.
Housen
and
K. A.
Holsapple
, “
Ejecta from impact craters
,”
Icarus
211
(
1
),
856
875
(
2011
).
11.
M.
Kiuchi
,
T.
Okamoto
,
Y.
Nagaashi
,
Y.
Yamaguchi
,
S.
Hasegawa
, and
A. M.
Nakamura
, “
Impact experiments on granular materials under low gravity: Effects of cohesive strength, internal friction, and porosity of particle layers on crater size
,”
Icarus
404
,
115685
(
2023
).
12.
M. A.
Cook
and
K. S.
Mortensen
, “
Impact cratering in granular materials
,”
J. Appl. Phys.
38
(
13
),
5125
5128
(
1967
).
13.
J. R.
De Bruyn
and
A. M.
Walsh
, “
Penetration of spheres into loose granular media
,”
Can. J. Phys.
82
(
6
),
439
446
(
2004
).
14.
J. C.
Ruiz-Suárez
, “
Penetration of projectiles into granular targets
,”
Rep. Prog. Phys.
76
(
6
),
066601
(
2013
).
15.
J.
Brisset
,
J.
Colwell
,
A.
Dove
,
S.
Abukhalil
,
C.
Cox
, and
N.
Mohammed
, “
Regolith behavior under asteroid-level gravity conditions: Low-velocity impact experiments
,”
Prog. Earth Planet. Sci.
5
(
1
),
73
(
2018
).
16.
J.
Brisset
,
C.
Cox
,
S.
Anderson
,
J.
Hatchitt
,
A.
Madison
,
M.
Mendonca
,
A.
Partida
, and
D.
Remie
, “
Regolith behavior under asteroid-level gravity conditions: Low-velocity impacts into mm- and cm-sized grain targets
,” Astron. Astrophys.
642
,
A198
(
2020
).
17.
J. S.
Uehara
,
M. A.
Ambroso
,
R. P.
Ojha
, and
D. J.
Durian
, “
Low-speed impact craters in loose granular media
,”
Phys. Rev. Lett.
90
(
19
),
194301
(
2003
).
18.
C. J.
Cline
and
M. J.
Cintala
, “
The effects of target density, porosity, and friction on impact crater morphometry: Exploratory experimentation using various granular materials
,”
Meteorit. Planet. Sci.
57
(
7
),
1441
1459
(
2022
).
19.
LHS-1 Lunar Highlands Simulant | Fact Sheet (
2022
).
20.
C.
Millwater
,
J.
Long-Fox
,
Z.
Landsman
,
A.
Metke
, and
D.
Britt
, “
Direct shear measurements of lunar regolith simulants LHS-1, LHS-1D, LMS-1, and LMS-1D
,” in
53rd Lunar and Planetary Science Conference
(
Universities Space Research Association (USRA)/Lunar and Planetary Institute (LPI)
,
2022
), Vol.
53
, p.
2038
.
21.
LMS-1 Lunar Mare Simulant | Fact Sheet (
2022
).
22.
MGS-1 Mars Global Simulant | Fact Sheet (
2022
).
23.
B.
Dotson
,
D.
Sanchez Valencia
,
C.
Millwater
,
P.
Easter
,
J.
Long-Fox
,
D.
Britt
, and
P.
Metzger
, “
Cohesion and shear strength of compacted lunar and Martian regolith simulants
,”
Icarus
411
,
115943
(
2024
).
24.
S.
Ozaki
,
G.
Ishigami
,
M.
Otsuki
,
H.
Miyamoto
,
K.
Wada
,
Y.
Watanabe
,
T.
Nishino
,
H.
Kojima
,
K.
Soda
,
Y.
Nakao
,
M.
Sutoh
,
T.
Maeda
, and
T.
Kobayashi
, “
Granular flow experiment using artificial gravity generator at International Space Station
,”
NPJ Microgravity
9
,
61
(
2023
).
25.
Y.
Tabuchi
,
A.
Kioka
, and
Y.
Yamada
, “
Water permeability of sunlit lunar highlands regolith using LHS-1 simulant
,”
Acta Astronaut.
213
,
344
354
(
2023
).
26.
A. R.
Clendensen
,
A.
Aleksandrov
,
B. M.
Jones
,
P. G.
Loutzenhiser
,
D. T.
Britt
, and
T. M.
Orlando
, “
Temperature programmed desorption comparison of lunar regolith to lunar regolith simulants LMS-1 and LHS-1
,”
Earth Planet Sci. Lett.
592
,
117632
(
2022
).
27.
D. I.
Goldman
and
P.
Umbanhowar
, “
Scaling and dynamics of sphere and disk impact into granular media
,”
Phys. Rev. E
77
,
021308
(
2008
).
28.
N. S.
Cheng
, “
Comparison of formulas for drag coefficient and settling velocity of spherical particles
,”
Powder Technol.
189
(
3
),
395
398
(
2009
).
29.
R.
Clift
and
W. H.
Gauvin
, “
Motion of entrained particles in gas streams
,”
Can. J. Chem. Eng.
49
(
4
),
439
448
(
1971
).
30.
J. E.
Colwell
,
S.
Batiste
,
M.
Horányi
,
S.
Robertson
, and
S.
Sture
, “
Lunar surface: Dust dynamics and regolith mechanics
,”
Rev. Geophys.
45
(
2
),
RG2006
, https://doi.org/10.1029/2005RG000184 (
2007
).
31.
N.
Murdoch
,
I. A.
Martinez
,
C.
Sunday
,
C.
Sunday
,
E.
Zenou
,
O.
Cherrier
,
O.
Cherrier
,
A.
Cadu
,
Y.
Gourinat
, and
Y.
Gourinat
, “
An experimental study of low-velocity impacts into granular material in reduced gravity
,”
Mon. Not. R Astron. Soc.
468
(
2
),
stw3391
1272
(
2017
).
32.
R.
Mazur
,
M.
Beczek
,
J.
Janiszewski
,
W.
Koperski
,
C.
Polakowski
,
B.
Fikus
,
A.
Sochan
,
R.
Wozniak
,
D.
Gozdzik
,
M.
Ryzak
,
M.
Banda
, and
A.
Bieganowski
, “
Experimental investigations of crater formation as a result of high-velocity impacts on sand bed
,”
PLoS ONE
17
,
e0265546
(
2022
).
33.
D.
Nowka
,
K.
Wünnemann
,
G. S.
Collins
, and
D.
Elbeshausen
, “
Scaling of impact crater formation on planetary surfaces
,” in
European Planetary Science Congress
(
2010
), Vol.
5
,
EPSC2010-87
.
34.
M. A.
Ambroso
,
C. R.
Santore
,
A. R.
Abate
, and
D. J.
Durian
, “
Penetration depth for shallow impact cratering
,”
Phys. Rev. E
71
(
5
),
051305
(
2005
).
35.
H.
Katsuragi
and
J.
Blum
, “
The physics of protoplanetesimal dust agglomerates. IX. Mechanical properties of dust aggregates probed by a solid-projectile impact
,”
Astrophys. J.
851
(
1
),
23
(
2017
).
36.
S. P. D.
Birch
,
M.
Manga
,
B.
Delbridge
, and
M.
Chamberlain
, “
Penetration of spherical projectiles into wet granular media
,”
Phys. Rev. E
90
(
3
),
032208
(
2014
).
37.
K. A.
Newhall
and
D. J.
Durian
, “
Projectile-shape dependence of impact craters in loose granular media
,”
Phys. Rev. E
68
(
6
),
060301
(
2003
).
38.
C.
Pitcher
,
N.
Kömle
,
O.
Leibniz
,
O.
Morales-Calderon
,
Y.
Gao
, and
L.
Richter
, “
Investigation of the properties of icy lunar polar regolith simulants
,”
Adv. Space Res.
57
(
5
),
1197
1208
(
2016
).
39.
M.
Siegler
,
O.
Aharonson
,
E.
Carey
,
M.
Choukroun
,
T.
Hudson
,
N.
Schorghofer
, and
S.
Xu
, “
Measurements of thermal properties of icy Mars regolith analogs
,”
J. Geophys. Res.
117
(
3
),
E03001
, https://doi.org/10.1029/2011JE003938 (
2012
).
40.
M.
Pakpour
,
N.
Vandewalle
, and
G.
Lumay
, “
Decompaction of wet granular materials under freeze-thaw cycling
,”
Phys. Rev. E
99
(
1
),
012901
(
2019
).
41.
M. T.
Barral
,
M.
Arias
, and
J.
Guérif
, “
Effects of iron and organic matter on the porosity and structural stability of soil aggregates
,”
Soil Tillage Res.
46
,
261
272
(
1998
).
42.
L.
Walter
,
Y.
Estevez
,
G.
Medjigbodo
,
J.-E.
Aubert
,
L.
Linguet
, and
O.
Nait-Rabah
, “
Design of poured earth construction materials from the elementary characteristics of tropical soils
,”
Case Stud. Constr. Mater.
20
,
e02709
(
2024
).
43.
S.
Subramanian
,
A.
Wilson
,
C.
White
,
K.
Kontis
,
D.
Evans
, and
J.
Van den Eynde
, “
Tracking plume-regolith interactions in near-vacuum conditions
,”
Phys. Fluids
36
(
1
),
013301
(
2024
).
44.
K.
Zacny
,
Y.
Bar-Cohen
,
M.
Brennan
,
G.
Briggs
,
G.
Cooper
,
K.
Davis
,
B.
Dolgin
,
D.
Glaser
,
B.
Glass
,
S.
Gorevan
,
J.
Guerrero
,
C.
McKay
,
G.
Paulsen
,
S.
Stanley
, and
C.
Stoker
, “
Drilling systems for extraterrestrial subsurface exploration
,”
Astrobiology
8
,
665
706
(
2008
).
45.
M.
Gao
,
X.
Wang
,
G.
Zhang
,
M.
Li
,
T.
Liu
,
H.
Hao
,
C.
Li
, and
H.
Xie
, “
The novel idea and technical progress of lunar in-situ condition preserved coring
,”
Geomech. Geophys. Geo-Energy Geo-Resour.
8
(
2
),
46
(
2022
).
46.
J. P.
Grotzinger
,
J.
Crisp
,
A. R.
Vasavada
,
R. C.
Anderson
,
C. J.
Baker
,
R.
Barry
,
D. F.
Blake
,
P.
Conrad
,
K. S.
Edgett
,
B.
Ferdowski
,
R.
Gellert
,
J. B.
Gilbert
,
M.
Golombek
,
J.
Gómez-Elvira
,
D. M.
Hassler
,
L.
Jandura
,
M.
Litvak
,
P.
Mahaffy
,
J.
Maki
,
M.
Meyer
,
M. C.
Malin
,
I.
Mitrofanov
,
J. J.
Simmonds
,
D.
Vaniman
,
R. V.
Welch
, and
R. C.
Wiens
, “
Mars Science Laboratory mission and science investigation
,”
Space Sci. Rev.
170
,
5
56
(
2012
).
47.
R. C.
Moeller
,
L.
Jandura
,
K.
Rosette
,
M.
Robinson
,
J.
Samuels
,
M.
Silverman
,
K.
Brown
,
E.
Duffy
,
A.
Yazzie
,
E.
Jens
,
I.
Brockie
,
L.
White
,
Y.
Goreva
,
T.
Zorn
,
A.
Okon
,
J.
Lin
,
M.
Frost
,
C.
Collins
,
J. B.
Williams
,
A.
Steltzner
,
F.
Chen
, and
J.
Biesiadecki
, “
The sampling and caching subsystem (SCS) for the scientific exploration of Jezero crater by the Mars 2020 perseverance rover
,”
Space Sci. Rev.
217
,
5
(
2021
).
48.
B. A. C. S.
Jayathilake
,
I. M. S. K.
Ilankoon
, and
M. N. P.
Dushyantha
, “
Assessment of significant geotechnical parameters for lunar regolith excavations
,”
Acta Astronaut.
196
,
107
122
(
2022
).
You do not currently have access to this content.