This paper discusses the acoustic mitigation properties of an air–water mixture excited by a monopole source. The numerical study reproduces a flat plate immersed in water and covered by an air film, acting as a sound barrier. This configuration mimics a mitigation device potentially in use for ship noise reduction, considering the flat plate as archetypal of a portion of the ship hull that works as a non-negligible scattering surface. The film, in this case, may also be used as an isolator with respect to the noise produced by the engines operating within the hull and propagating in the water. The study uses a homogeneous mixture model to reproduce the fluid dynamic field of air injected into the water. Once the air–water mixture is fully developed, the density and speed of sound distributions are extrapolated and used as input parameters for the acoustic propagation model. The monopole source exits the mixture layer, and the attenuation properties are assessed by recording the time signal on a probe positioned on the reflecting wall. The results show the difference in the transmission of acoustic pressure considering different frequencies and distributions of the mixture. These findings have significant practical implications, as they demonstrate how the air film can effectively attenuate the signal, with the mitigation effectiveness varying with the source's frequency and the distribution of the mixture of air and water in space.

1.
Bohne
,
T.
,
Grießmann
,
T.
, and
Rolfes
,
R.
, “
Modeling the noise mitigation of a bubble curtain
,”
J. Acoust. Soc. Am.
146
(
4
),
2212
2223
(
2019
).
2.
Brandao
,
F. L.
,
Kumar
,
P.
, and
Mahesh
,
K.
, “
Large-eddy simulation of elliptic hydrofoil tip vortex cavitation under incipient conditions
,”
Int. J. Multiphase Flow
174
,
104795
(
2024
).
3.
Brekhovskikh
,
L. M.
and
Godin
,
O. A.
,
Acoustics of Layered Media II: Point Sources and Bounded Beams
(
Springer
,
1992
).
4.
Chern
,
A.
, “
A reflectionless discrete perfectly matched layer
,”
J. Comput. Phys.
381
,
91
109
(
2019
).
5.
Chicharro
,
R.
and
Vazquez
,
A.
, “
The acoustic signature of gas bubbles generated in a liquid cross-flow
,”
Exp. Therm. Fluid Sci.
55
,
221
227
(
2014
).
6.
Cianferra
,
M.
and
Armenio
,
V.
, “
Rayleigh-Plesset-based Eulerian mixture model for cavitating flows
,”
Phys. Fluids
36
,
043327
(
2024
).
7.
Commander
,
K. W.
and
Prosperetti
,
A.
, “
Linear pressure waves in bubbly liquids: Comparison between theory and experiments
,”
J. Acoust. Soc. Am.
85
(
2
),
732
746
(
1989
).
8.
Dablain
,
M. A.
, “
The application of high-order differencing to the scalar wave equation
,”
Geophysics
51
(
1
),
54
66
(
1986
).
9.
Domenico
,
S. N.
, “
Acoustic wave propagation in air-bubble curtains in water; part I. History and theory
,”
Geophysics
47
(
3
),
345
353
(
1982
).
10.
Ghahramani
,
E.
,
Jahangir
,
S.
,
Neuhauser
,
M.
,
Bourgeois
,
S.
,
Poelma
,
C.
, and
Bensow
,
R. E.
, “
Experimental and numerical study of cavitating flow around a surface mounted semi-circular cylinder
,”
Int. J. Multiphase Flow
124
,
103191
(
2020
).
11.
Ghahramani
,
E.
,
Ström
,
H.
, and
Bensow
,
R. E.
, “
Numerical simulation and analysis of multi-scale cavitating flows
,”
J. Fluid Mech.
922
,
A22
(
2021
).
12.
Glushkov
,
E. V.
,
Glushkova
,
N. V.
, and
Godin
,
O. A.
, “
The effect of anomalous transparency of the water-air interface for a volumetric sound source
,”
Acoust. Phys.
59
,
6
15
(
2013
).
13.
Godin
,
O. A.
, “
Anomalous transparency of water-air interface for low-frequency sound
,”
Phys. Rev. Lett.
97
(
16
),
164301
(
2006
).
14.
Godin
,
O. A.
, “
Transmission of low-frequency sound through the water-to-air interface
,”
Acoust. Phys.
53
,
305
312
(
2007
).
15.
Godin
,
O. A.
, “
Low-frequency sound transmission through a gas-liquid interface
,”
J. Acoust. Soc. Am.
123
(
4
),
1866
1879
(
2008a
).
16.
Godin
,
O. A.
, “
Sound transmission through water-air interfaces: New insights into an old problem
,”
Contemp. Phys.
49
(
2
),
105
123
(
2008b
).
17.
Hilo
,
A. K.
,
Hong
,
J.
,
Kim
,
K.
,
Ahn
,
B.
,
Lee
,
J.
,
Shin
,
S.
, and
Moon
,
I.
, “
Study of an air bubble curtain along a wall in water and radiated noise mitigation
,”
Phys. Fluids
34
(
11
),
117115
(
2022
).
18.
Hilo
,
A. K.
,
Hong
,
J.
,
Kim
,
K.
,
Ahn
,
B.
,
Park
,
C.
,
Kim
,
G.
, and
Moon
,
I.
, “
Experimental study on insertion loss of air bubble layer in freestream flow
,”
Wave Motion
123
,
103227
(
2023
).
19.
Hirt
,
C. W.
and
Nichols
,
B. D.
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
(
1
),
201
225
(
1981
).
20.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
, “
Turbulence statistics in fully developed channel flow at low Reynolds number
,”
J. Fluid Mech.
177
,
133
166
(
1987
).
21.
Lamonaca
,
F.
,
Petris
,
G.
,
Cianferra
,
M.
, and
Armenio
,
V.
, “
Non-reflective hard source method for multiple physically extended sources and scattering bodies
,”
Phys. Fluids
36
(
3
),
037115
(
2024
).
22.
Liu
,
J.
,
Cong
,
S.
,
Song
,
Y.
,
Wu
,
D.
, and
Chen
,
S.
, “
Experimental study on asymmetric bubbles rising in water: Morphology and acoustic signature
,”
Phys. Fluids
34
(
2
),
023317
(
2022
).
23.
Lloyd
,
T.
,
Lafeber
,
F. H.
, and
Bosschers
,
J.
, “
Ship urn mitigation by air injection: Model-scale experiments and application to full-scale measurement data
,” in
8th International Symposium on Marine Propulsors, Smp 2024
(
Department of Marine Technology
,
Norwegian University of Science and Technology
,
2024
), pp.
237
247
.
24.
Lucke
,
K.
,
Lepper
,
P. A.
,
Blanchet
,
M.
, and
Siebert
,
U.
, “
The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena)
,”
J. Acoust. Soc. Am.
130
(
5
),
3406
3412
(
2011
).
25.
Ma
,
J.
,
Chahine
,
G. L.
, and
Hsiao
,
C.
, “
Spherical bubble dynamics in a bubbly medium using an Euler–Lagrange model
,”
Chem. Eng. Sci.
128
,
64
81
(
2015
).
26.
Madabhushi
,
A.
and
Mahesh
,
K.
, “
A compressible multi-scale model to simulate cavitating flows
,”
J. Fluid Mech.
961
,
A6
(
2023
).
27.
Mattson
,
M.
and
Mahesh
,
K.
, “
Simulation of bubble migration in a turbulent boundary layer
,”
Phys. Fluids
23
(
4
),
045107
(
2011
).
28.
Nicoud
,
F.
and
Ducros
,
F.
, “
Subgrid-scale stress modelling based on the square of the velocity gradient tensor
,”
Flow, Turbul. Combust.
62
(
3
),
183
200
(
1999
).
29.
O'Neill
,
P. L.
,
Nicolaides
,
D.
,
Honnery
,
D.
, and
Soria
,
J.
, “
Autocorrelation functions and the determination of integral length with reference to experimental and numerical data
,” in
15th Australasian Fluid Mechanics Conference
(
University of Sydney
,
Sydney, NSW, Australia
,
2004
), Vol.
1
, pp.
1
4
.
30.
Park
,
H. J.
,
Tasaka
,
Y.
, and
Murai
,
Y.
, “
Bubbly drag reduction accompanied by void wave generation inside turbulent boundary layers
,”
Exp. Fluids
59
,
166
(
2018
).
31.
Peng
,
Y.
,
Tsouvalas
,
A.
,
Stampoultzoglou
,
T.
, and
Metrikine
,
A.
, “
Study of the sound escape with the use of an air bubble curtain in offshore pile driving
,”
J. Mar. Sci. Eng.
9
(
2
),
232
(
2021
).
32.
Peters
,
A.
and
el Moctar
,
O.
, “
Numerical assessment of cavitation-induced erosion using a multi-scale Euler–Lagrange method
,”
J. Fluid Mech.
894
,
A19
(
2020
).
33.
Petris
,
G.
,
Cianferra
,
M.
, and
Armenio
,
V.
, “
A numerical method for the solution of the three-dimensional acoustic wave equation in a marine environment considering complex sources
,”
Ocean Eng.
256
,
111459
(
2022
).
34.
Petris
,
G.
,
Cianferra
,
M.
, and
Armenio
,
V.
, “
Full acoustic analogy of the fluid-dynamics noise of an immersed cube
,”
Ocean Eng.
300
,
117433
(
2024
).
35.
Pierce
,
A. D.
,
Acoustics: An Introduction to Its Physical Principles and Applications
(
Springer
,
2019
).
36.
Shams
,
E.
,
Finn
,
J.
, and
Apte
,
S. V.
, “
A numerical scheme for Euler–Lagrange simulation of bubbly flows in complex systems
,”
Numer. Methods Fluids
67
(
12
),
1865
1898
(
2011
).
37.
Tsouvalas
,
A.
and
Metrikine
,
A. V.
, “
Noise reduction by the application of an air-bubble curtain in offshore pile driving
,”
J. Sound Vib.
371
,
150
170
(
2016
).
38.
van Sint Annaland
,
M.
,
Deen
,
N. G.
, and
Kuipers
,
J. A. M.
, “
Numerical simulation of gas bubbles behaviour using a three-dimensional volume of fluid method
,”
Chem. Eng. Sci.
60
(
11
),
2999
3011
(
2005
).
39.
Van Wijngaarden
,
L.
, “
On the equations of motion for mixtures of liquid and gas bubbles
,”
J. Fluid Mech.
33
(
3
),
465
474
(
1968
).
40.
Wang
,
Z.
,
Cheng
,
H.
, and
Ji
,
B.
, “
Euler–Lagrange study of cavitating turbulent flow around a hydrofoil
,”
Phys. Fluids
33
(
11
),
112108
(
2021
).
41.
Wang
,
Z.
,
Zhou
,
W.
,
Shu
,
T.
,
Xue
,
Q.
,
Zhang
,
R.
, and
Wiercigroch
,
M.
, “
Modelling of low-frequency acoustic wave propagation in dilute gas-bubbly liquids
,”
Int. J. Mech. Sci.
216
,
106979
(
2022
).
42.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
, “
A tensorial approach to computational continuum mechanics using object-oriented techniques
,”
Comput. Phys.
12
(
6
),
620
631
(
1998
).
43.
Wilson
,
P. S.
, “
Low-frequency dispersion in bubbly liquids
,”
Acoust. Res. Lett.
6
(
3
),
188
194
(
2005
).
44.
Wood
,
A. B.
,
A Textbook of Sound
(
MacMillan
,
1930
).
45.
Wursig
,
B.
,
Greene
,
C. R.
, Jr.
, and
Jefferson
,
T. A.
, “
Development of an air bubble curtain to reduce underwater noise of percussive piling
,”
Mar. Environ. Res.
49
(
1
),
79
93
(
2000
).
46.
Zhang
,
X.
,
Wang
,
J.
, and
Wan
,
D.
, “
Euler–Lagrange study of bubble drag reduction in turbulent channel flow and boundary layer flow
,”
Phys. Fluids
32
(
2
),
027101
(
2020
).
47.
Zhang
,
X.
,
Wang
,
J.
, and
Wan
,
D.
, “
Euler–Lagrange study of bubble breakup and coalescence in a turbulent boundary layer for bubble drag reduction
,”
Phys. Fluids
33
(
3
),
037105
(
2021
).
You do not currently have access to this content.