The coffee-ring effect is a phenomenon in which particles are deposited on a contact line during the evaporation of a particle-laden sessile droplet. In this study, a patterned contact-angle substrate was designed using lattice Boltzmann simulation to suppress the coffee-ring effect. The simulation model was a combination of multiphase flow, heat transfer, and nanoparticle dynamics models. The simulation results repeatedly showed the contact line of the evaporating droplet on the patterned substrate during pinning and depinning. The contact line dynamics also affected the particle distribution. A multi-ring pattern was observed on the patterned substrate compared to the particle distribution on a substrate with a constant contact angle. This was a result of the repeated pinning and depinning of the contact line, and it was compared using the particle uniformity index presented in this study. This revealed a particle distribution that was 4.24-fold more uniform than the coffee-ring pattern. In subsequent pattern optimization, the particle uniformities of 51 cases with different geometries were measured. The pinning time in each patterned area of the case with the most uniform particle distribution was measured. Other factors, in addition to the pinning time, affected particle deposition, and the internal flow of the droplet was further analyzed. Within the droplet, the Marangoni flow generally decreased with continuous oscillations, whereas the capillary flow increased sharply in the region with a receding angle of 45°. This sharp increase in the capillary flow caused the particles trapped in the Marangoni flow to escape and increased the deposition rate.

1.
S.
Chung
,
K.
Cho
, and
T.
Lee
, “
Recent progress in inkjet-printed thin-film transistors
,”
Adv. Sci. (Weinh)
6
,
1801445
(
2019
).
2.
S.
Khan
,
L.
Lorenzelli
, and
R. S.
Dahiya
, “
Technologies for printing sensors and electronics over large flexible substrates: A review
,”
IEEE Sens. J.
15
,
3164
3185
(
2015
).
3.
K. Y.
Mitra
,
A.
Alalawe
,
S.
Voigt
,
C.
Boeffel
, and
R. R.
Baumann
, “
Manufacturing of all inkjet-printed organic photovoltaic cell arrays and evaluating their suitability for flexible electronics
,”
Micromachines (Basel)
9
,
642
(
2018
).
4.
R.
Kaçar
,
R. B.
Serin
,
E.
Uçar
, and
A.
Ülkü
, “
A review of high-end display technologies focusing on inkjet printed manufacturing
,”
Mater. Today Commun.
35
,
105534
(
2023
).
5.
S. G.
Hashmi
,
M.
Ozkan
,
J.
Halme
,
K. D.
Misic
,
S. M.
Zakeeruddin
,
J.
Paltakari
,
M.
Grätzel
, and
P. D.
Lund
, “
High performance dye-sensitized solar cells with inkjet printed ionic liquid electrolyte
,”
Nano Energy
17
,
206
215
(
2015
).
6.
D.
Peer
,
J. M.
Karp
,
S.
Hong
,
O. C.
Farokhzad
,
R.
Margalit
, and
R.
Langer
, “
Nanocarriers as an emerging platform for cancer therapy
,”
Nat. Nanotech.
2
,
751
760
(
2007
).
7.
M.
Bienia
,
M.
Lejeune
,
M.
Chambon
,
V.
Baco-Carles
,
C.
Dossou-Yovo
,
R.
Noguera
, and
F.
Rossignol
, “
Inkjet printing of ceramic colloidal suspensions: Filament growth and breakup
,”
Chem. Eng. Sci.
149
,
1
13
(
2016
).
8.
H. M.
Lee
and
J. S.
Lee
, “
Effects of heat transfer on particle suspended drop-on-demand inkjet printing using lattice Boltzmann method
,”
Appl. Therm. Eng.
213
,
118637
(
2022
).
9.
A.
Lee
,
K.
Sudau
,
K. H.
Ahn
,
S. J.
Lee
, and
N.
Willenbacher
, “
Optimization of experimental parameters to suppress nozzle clogging in inkjet printing
,”
Ind. Eng. Chem. Res.
51
,
13195
13204
(
2012
).
10.
Y.
Li
,
O.
Dahhan
,
C. D. M.
Filipe
,
J. D.
Brennan
, and
R. H.
Pelton
, “
Deposited nanoparticles can promote air clogging of piezoelectric inkjet printhead nozzles
,”
Langmuir
35
,
5517
5524
(
2019
).
11.
J.
Sun
,
M.
Kuang
, and
Y.
Song
, “
Control and application of “coffee ring” effect in inkjet printing
,”
Prog. Chem.
27
,
979
(
2015
).
12.
R. D.
Deegan
,
O.
Bakajin
,
T. F.
Dupont
,
G.
Huber
,
S. R.
Nagel
, and
T. A.
Witten
, “
Capillary flow as the cause of ring stains from dried liquid drops
,”
Nature
389
,
827
829
(
1997
).
13.
T. M.
Yen
,
X.
Fu
,
T.
Wei
,
R. U.
Nayak
,
Y.
Shi
, and
Y.-H.
Lo
, “
Reversing coffee-ring effect by laser-induced differential evaporation
,”
Sci. Rep.
8
,
1
11
(
2018
).
14.
T.
Wang
,
W.
Yang
,
Z.
Wang
,
B.
Wang
,
M.
Li
,
L.
Shi
, and
S.
Rao
, “
Taming the coffee-ring effect on solid surface by localized heating upon the suspension droplet
,”
Int. J. Heat Mass Transf.
219
,
124920
(
2024
).
15.
T.
Still
,
P. J.
Yunker
, and
A. G.
Yodh
, “
Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops
,”
Langmuir
28
,
4984
4988
(
2012
).
16.
P. J.
Yunker
,
T.
Still
,
M. A.
Lohr
, and
A. G.
Yodh
, “
Suppression of the coffee-ring effect by shape-dependent capillary interactions
,”
Nature
476
,
308
311
(
2011
).
17.
M.
Jadav
,
R. J.
Patel
, and
R. V.
Mehta
, “
Influence of magnetic field on evaporation of a ferrofluid droplet
,”
J. Appl. Phys.
122
,
145302
(
2017
).
18.
K. N.
Al-Milaji
,
R. L.
Hadimani
,
S.
Gupta
,
V. K.
Pecharsky
, and
H.
Zhao
, “
Inkjet printing of magnetic particles toward anisotropic magnetic properties
,”
Sci. Rep.
9
,
16261
(
2019
).
19.
R.
Bhardwaj
,
X.
Fang
,
P.
Somasundaran
, and
D.
Attinger
, “
Self-assembly of colloidal particles from evaporating droplets: Role of dlvo interactions and proposition of a phase diagram
,”
Langmuir
26
,
7833
7842
(
2010
).
20.
A. G.
Marin
,
H.
Gelderblom
,
A.
Susarrey-Arce
,
A.
van Houselt
,
L.
Lefferts
,
J. G.
Gardeniers
,
D.
Lohse
, and
J. H.
Snoeijer
, “
Building microscopic soccer balls with evaporating colloidal fakir drops
,”
Proc. Natl. Acad. Sci. U. S. A.
109
,
16455
16458
(
2012
).
21.
D.
Mampallil
,
J.
Reboud
,
R.
Wilson
,
D.
Wylie
,
D. R.
Klug
, and
J. M.
Cooper
, “
Acoustic suppression of the coffee-ring effect
,”
Soft Matter
11
,
7207
7213
(
2015
).
22.
A. S.
Joshi
and
Y.
Sun
, “
Wetting dynamics and particle deposition for an evaporating colloidal drop: A lattice Boltzmann study
,”
Phys. Rev. E
82
,
041401
(
2010
).
23.
L.
Zhang
and
X.
Wang
, “
Numerical coffee-ring patterns with new interfacial schemes in 3d hybrid lb-le model
,”
Powder Technol.
392
,
130
140
(
2021
).
24.
G.
Nath
and
B.
Ray
, “
Manipulating the three-phase contact line of an evaporating particle-laden droplet to get desirable microstructures: A lattice Boltzmann study
,”
Phys. Fluids
33
,
083304
(
2021
).
25.
H. M.
Lee
and
J. S.
Lee
, “
Particle deposition dynamics in evaporating droplets using lattice Boltzmann and magnetic particle simulation
,”
Phys. Fluids
35
,
123325
(
2023
).
26.
X.
He
and
L.-S.
Luo
, “
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation
,”
Phys. Rev. E
56
,
6811
(
1997
).
27.
A. L.
Kupershtokh
,
D. A.
Medvedev
, and
D. I.
Karpov
, “
On equations of state in a lattice Boltzmann method
,”
Comput. Math. Appl.
58
,
965
974
(
2009
).
28.
S.
Gong
and
P.
Cheng
, “
Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows
,”
Comput. Fluids
53
,
93
104
(
2012
).
29.
P.
Yuan
and
L.
Schaefer
, “
Equations of state in a lattice Boltzmann model
,”
Phys. Fluids
18
,
42101
(
2006
).
30.
S.
Sohrabi
and
Y.
Liu
, “
Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods
,”
Phys. Rev. E
97
,
33105
(
2018
).
31.
H.
Ding
and
P. D.
Spelt
, “
Wetting condition in diffuse interface simulations of contact line motion
,”
Phys. Rev. E
75
,
46708
(
2007
).
32.
S.
Gong
and
P.
Cheng
, “
A lattice Boltzmann method for simulation of liquid–vapor phase-change heat transfer
,”
Int. J. Heat Mass Transf.
55
,
4923
4927
(
2012
).
33.
Y.
Peng
,
C.
Shu
, and
Y.
Chew
, “
Simplified thermal lattice Boltzmann model for incompressible thermal flows
,”
Phys. Rev. E
68
,
26701
(
2003
).
34.
C.
Zhang
,
P.
Cheng
, and
F.
Hong
, “
Mesoscale simulation of heater size and subcooling effects on pool boiling under controlled wall heat flux conditions
,”
Int. J. Heat Mass Transf.
101
,
1331
1342
(
2016
).
35.
C.
Zhang
,
H.
Zhang
,
Y.
Zhao
, and
C.
Yang
, “
An immersed boundary-lattice Boltzmann model for simulation of deposited particle patterns in an evaporating sessile droplet with dispersed particles
,”
Int. J. Heat Mass Transf.
181
,
121905
(
2021
).
36.
R.
Verberg
,
J. M.
Yeomans
, and
A. C.
Balazs
, “
Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets
,”
J. Chem. Phys.
123
,
224706
(
2005
).
37.
H. C.
Hamaker
, “
The London—van der waals attraction between spherical particles
,”
Physica
4
,
1058
1072
(
1937
).
38.
Z.-G.
Feng
and
E. E.
Michaelides
, “
The immersed boundary-lattice boltzmann method for solving fluid–particles interaction problems
,”
J. Comput. Phys.
195
,
602
628
(
2004
).
39.
N.-A.
Goy
,
N.
Bruni
,
A.
Girot
,
J.-P.
Delville
, and
U.
Delabre
, “
Thermal Marangoni trapping driven by laser absorption in evaporating droplets for particle deposition
,”
Soft Matter
18
,
7949
7958
(
2022
).
40.
M. E.
Shanahan
, “
Simple theory of“ stick-slip” wetting hysteresis
,”
Langmuir
11
,
1041
1043
(
1995
).
41.
Y. O.
Popov
, “
Evaporative deposition patterns: Spatial dimensions of the deposit
,”
Phys. Rev. E
71
,
36313
(
2005
).
42.
R.
Bhardwaj
,
X.
Fang
, and
D.
Attinger
, “
Pattern formation during the evaporation of a colloidal nanoliter drop: A numerical and experimental study
,”
New J. Phys.
11
,
75020
(
2009
).
You do not currently have access to this content.