Improving the dynamic rheological properties of magnetorheological shear thickening fluid is beneficial to its improved application in dampers. In this work, we mixed silicon dioxide (SiO2), carbonyl iron powder (CIP), and sepiolite (Sep) into polyethylene glycol to prepare a novel sepiolite magnetorheological shear thickening fluid (MR-Sep/STF). The dynamic rheological properties of the MR-Sep/STF and stress attenuation were studied through orthogonal array testing. Specifically, we mean that using this experimental design to evaluate the effects of varying proportions of SiO2, CIP, and Sep on the damping factor, dynamic yield stress, and shear thickening effect. The excellent performance of the MR-Sep/STF was achieved at an optimal ratio of 55% SiO2, 10% CIP, and 2% Sep. In addition, stress attenuation tests indicated that when the shear rate was within the range of 30–40 s−1, the stress attenuation is roughly between 42.85% and 59.78%. Once the shear rate exceeded 40 s−1, the stress decreased by more than 300%. Furthermore, we proposed a structural kinetics constitutive model that offers profound insight into the dynamic response mechanisms of the MR-Sep/STF: at the maximum shear rate, the structure generation rate a has a maximum value. Once maximum shear rate is exceeded, the structure decomposition rate b is greater than the generation rate a, and the viscosity and stress decrease macroscopically.

1.
M.
Wyart
and
M. E.
Cates
, “
Discontinuous shear thickening without inertia in dense non-Brownian suspensions
,”
Phys. Rev. Lett.
112
,
098302
(
2014
).
2.
J.-Y.
Park
,
G.-W.
Kim
,
J.-S.
Oh
, and
Y.-C.
Kim
, “
Hybrid multi-plate magnetorheological clutch featuring two operating modes: Fluid coupling and mechanical friction
,”
J. Intell. Mater. Syst. Struct.
32
(
14
),
1537
1549
(
2021
).
3.
B.
Liu
,
C.
Du
,
H.
Deng
,
Z.
Fan
,
J.
Zhang
,
F.
Zeng
,
Y.
Fu
, and
X.
Gong
, “
Mechanical properties of magneto-sensitive shear thickening fluid absorber and application potential in a vehicle
,”
Compos. A: Appl. Sci. Manuf.
154
,
106782
(
2022
).
4.
S.
Li
,
S.
Qi
,
J.
Liu
,
J.
Fu
,
Y.
Li
,
L.
Bai
,
W.
Wu
, and
M.
Yu
, “
Dimensional analysis for sedimentation behavior of magnetorheological fluids
,”
Phys. Fluids.
36
,
033347
(
2024
).
5.
J.
Yang
,
D.
Ning
,
S. S.
Sun
,
J.
Zheng
,
H.
Lu
,
M.
Nakano
,
S.
Zhang
,
H.
Du
, and
W. H.
Li
, “
A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component
,”
Mech. Syst. Signal Process.
147
,
107071
(
2021
).
6.
Y.
Tian
,
J.-L.
Jiang
, and
Y.-G.
Meng
, “
A shear thickening phenome-non in magnetic field controlled-dipolar suspensions
,”
J. Appl. Phys. Lett.
97
,
15904
(
2010
).
7.
J. S.
Zhang
,
Y.
Wang
,
J. Y.
Zhou
,
C. Y.
Zhao
,
Y.-X.
Wu
, and
S.
Liu
, “
Intralayer interfacial sliding effect on the anti-impact performance of STF/Kevlar composite fabric
,”
Compos Appl. Sci. Manuf.
145
,
106401
(
2021
).
8.
S.
Sen
,
A.
Shaw
, and
A.
Deb
, “
Numerical investigation of ballistic performance of shear thickening fluid (STF)-Kevlar composite
,”
Int. J. Mech. Sci.
164
,
105174
(
2019
).
9.
X. Z.
Zhang
,
W. H.
Li
, and
X. L.
Gong
, “
The rheology of shear thickening fluid (STF) and the dynamic performance of an STF-filled damper
,”
Smart Mater. Struct.
17
,
035027
(
2008
).
10.
B.
Liu
,
Q.
Liu
,
Y.
Pan
,
J.
Zhou
,
J.
Zhang
,
S.
Liu
,
Z.
Fan
,
H.
Deng
,
Y.
Hu
, and
X.
Gong
, “
An impact-resistant and flame-retardant CNTs/STF/Kevlar composite with conductive property for safe wearable design
,”
Compos. A: Appl. Sci. Manuf.
168
,
107489
(
2023
).
11.
V.
Sokolovski
,
T.
Tian
,
J.
Ding
, and
W.
Li
, “
Fabrication and characterization of magnetorheological shear thickening fluids
,”
Front. Mater
7
,
595100
(
2020
).
12.
C. S.
Maurya
and
C.
Sarkar
, “
Dynamic and creep and recovery performance of Fe3O4 nanoparticle and carbonyl iron microparticle water-based magnetorheological fluid
,”
J. Intell. Mater. Syst. Struct.
33
,
743
755
(
2022
).
13.
Q.
Zhao
,
K.
Wang
, and
J.
Yuan
, “
Research on rheological properties and phenomenological theory-based constitutive model of magnetorheological shear thickening fluids
,”
Smart Mater. Struct.
32
,
105037
(
2023
).
14.
J.
Cheng
,
K.
Liu
,
Z.
Zhang
,
Z.
Wei
,
Y.
Ma
, and
S.
Lu
, “
Effect of compound surfactants modified carbonyl iron on magnetorheological fluids
,”
J. Supercond. Novel Magn.
34
,
1177
1183
(
2021
).
15.
E.
Kutalkova
,
T.
Plachy
, and
M.
Sedlacik
, “
On the enhanced sedimentation stability and electrorheological performance of intelligent fluids based on sepiolite particles
,”
J. Mol. Liq.
309
,
113120
(
2020
).
16.
J. A.
Marins
,
T.
Plachy
, and
P.
Kuzhir
, “
Iron-sepiolite magnetorheological fluids with improved performances
,”
J. Rheol.
63
,
125
139
(
2019
).
17.
R.
Milde
,
R.
Moucka
,
M.
Sedlacik
, and
V.
Pata
, “
Iron-sepiolite high-performance magnetorheological polishing fluid with reduced sedimentation
,”
Int. J. Mol. Sci.
23
,
12187
(
2022
).
18.
Y. Z.
Dong
,
W. J.
Han
, and
H. J.
Choi
, “
Additive effect of rod-like magnetite/sepiolite composite particles on magneto rheology
,”
J. Ind. Eng. Chem.
93
,
210
215
(
2021
).
19.
H. A.
Barnes
, “
Thixotropy—a review
,”
J. Non-Newtonian Fluid Mech.
70
,
1
33
(
1997
).
20.
X. Z.
Zhang
,
W. H.
Li
, and
X. L.
Gong
, “
Thixotropy of MR shear-thickening fluids
,”
Smart Mater. Struct.
19
,
125012
(
2010
).
21.
M. S. M.
Wee
,
L.
Matia-Merino
, and
K. K. T.
Goh
, “
Time-and shear history-dependence of the rheological properties of a water-soluble extract from the fronds of the black tree fern, Cyathea medullaris
,”
J. Rheol.
59
,
365
376
(
2015
).
22.
J. J. J.
Gillissen
,
C.
Ness
,
J. D.
Peterson
,
H. J.
Wilson
, and
M. E.
Cates
, “
Constitutive model for time-dependent flows of shear-thickening suspensions
,”
Phys. Rev. Lett.
123
,
214504
(
2019
).
23.
Q.
Chen
,
S.
Xuan
,
W.
Jiang
,
S.
Cao
, and
X.
Gong
, “
Shear time dependent viscosity of polystyrene-ethylacrylate based shear thickening fluid
,”
Smart Mater. Struct.
25
,
045005
(
2016
).
24.
F. W.
ZHAO
,
J. H.
HU
, and
P. P.
ZENG
, “
Optimization research of base-phosphogypsum cemented backfill ratio based on orthogonal test
,”
Chin. J. Nonferrous Met.
31
,
1096
1105
(
2021
).
25.
T.
Luo
,
C.
Wu
, and
L.
Duan
, “
Fishbone diagram and risk matrix analysis method and its application in safety assessment of natural gas spherical tank
,”
J. Clean. Prod.
174
,
296
304
(
2018
).
26.
S.
Cao
,
Q.
He
, and
H.
Pang
, “
Stress relaxation in the transition from shear thinning to shear jamming in shear thickening fluid
,”
Smart Mater. Struct.
27
,
085013
(
2018
).
27.
S.
Qi
,
M.
Yu
, and
J.
Fu
, “
Stress relaxation behavior of magnetorheological elastomer: Experimental and modeling study
,”
J. Intell. Mater. Syst. Struct.
29
,
205
213
(
2018
).
28.
C. J.
Dimitriou
and
G. H.
McKinley
, “
A comprehensive constitutive law for waxy crude oil: A thixotropic yield stress fluid
,”
Soft Matter
10
,
6619
6644
(
2014
).
29.
R.
Li
,
P.
Wang
, and
A.
Ma
, “
Time-dependent thixotropy of dysphagia management-oriented polysaccharide solutions
,”
Food Hydrocolloids
144
,
109018
(
2023
).
30.
F. J.
Rubio-Hernández
,
J. H.
Sánchez-Toro
, and
N. M.
Páez-Flor
, “
Testing shear thinning/thixotropy and shear thickening/anti thixotropy relationships in a fumed silica suspension
,”
J. Rheol.
64
,
785
797
(
2020
).
31.
R. G.
Larson
and
Y.
Wei
, “
A review of thixotropy and its rheological modeling
,”
J. Rheol.
63
,
477
501
(
2019
).
32.
E.
Brown
and
H. M.
Jaeger
, “
Shear thickening in concentrated suspensions: Phenomenology, mechanisms and relations to jamming
,”
Rep. Prog. Phys.
77
,
046602
(
2014
).
33.
K.
Dullaert
and
J.
Mewis
, “
A structural kinetics model for thixotropy
,”
J. Non-Newton Fluid
139
,
21
30
(
2006
).
34.
R.
Neelakantan
,
F.
Vaezi
, and
R. S.
Sanders
, “
Effect of shear on the yield stress and aggregate structure of flocculant-dosed, concentrated kaolinite suspensions
,”
Miner. Eng.
123
,
95
103
(
2018
).
35.
I.
Bahiuddin
,
S. A.
Mazlan
,
M. I.
Shapiai
,
F.
Imaduddin
,
Ubaidillah
, and
S. B.
Choi
, “
A new platform for the prediction of field-dependent yield stress and plastic viscosity of magnetorheological fluids using particle swarm optimization
,”
Appl. Soft Comput.
76
,
615
628
(
2019
).
36.
H.
Jiang
,
M.
Fall
, and
E.
Yilmaz
, “
Effect of mineral admixtures on flow properties of fresh cemented paste backfill: Assessment of time dependency and thixotropy
,”
Powder Technol.
372
,
258
266
(
2020
).
37.
L.
Ma
,
D.
Yin
,
J.
Ren
,
B.
Han
, and
S.
Qin
, “
A novel thixotropic structural dynamics model of water-based drilling fluids
,”
Geoenergy Sci. Eng.
234
,
212585
(
2024
).
38.
R.
Sharma
,
S. K.
Verma
,
I.
Biswas
,
D.
Bhattacharjee
, and
P.
Kamal
, “
Effect of thermal surface activation of silica nanoparticles on the rheological behavior of shear thickening fluid
,”
J. Mater. Res. Express
6
,
065710
(
2019
).
39.
W. F.
Jiang
,
S. H.
Xuan
, and
X. L.
Gong
, “
The role of shear in the transition from continuous shear thickening to discontinuous shear thickening
,”
Appl. Phys. Lett.
106
,
151902
(
2015
).
40.
N. Y. C.
Lin
,
B. M.
Guy
,
M.
Hermes
,
C.
Ness
,
J.
Sun
,
W. C. K.
Poon
, and
I.
Cohen
, “
Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions
,”
Phys. Rev. Lett.
115
,
228304
(
2015
).
You do not currently have access to this content.