Clay, the major ingredient of natural soils, is used as a rheological modifier while formulating paints and coatings. When subjected to desiccation, colloidal clay suspensions and clayey soils crack due to the accumulation of drying-induced stresses. Even when desiccation is suppressed, aqueous clay suspensions exhibit physical aging, with their elastic and viscous moduli increasing over time as the clay particles self-assemble into gel-like networks due to time-dependent inter-particle screened electrostatic interactions. The rate of evolution of the suspension structures and therefore of the mechanical moduli can be controlled by changing clay concentration or by incorporating additives. Since physical aging and desiccation should both contribute to the consolidation of drying clay suspensions, we manipulate the desiccation process via alterations of clay and additive concentrations. For a desiccating sample with an accelerated rate of aging, we observe faster consolidation into a semi-solid state and earlier onset of cracks. We estimate the crack onset time, tc, in direct visualization experiments and the elasticity of the drying sample layer, E, using microindentation in an atomic force microscope. We demonstrate that tcGcE, where Gc, the fracture energy, is estimated by fitting our experimental data to a linear poroelastic model that incorporates the Griffith's criterion for crack formation. Our work demonstrates that early crack onset is associated with lower sample ductility. The correlation between crack onset in a sample and its mechanical properties as uncovered here is potentially useful in preparing crack-resistant coatings and diverse clay structures.

1.
L.
Goehring
, “
Evolving fracture patterns: columnar joints, mud cracks and polygonal terrain
,”
Philos. Trans. R. Soc. A
371
,
20120353
(
2013
).
2.
A. F.
Routh
, “
Drying of thin colloidal films
,”
Rep. Prog. Phys
76
,
046603
(
2013
).
3.
T.
Boeck
,
H.-A.
Bahr
,
S.
Lampenscherf
, and
U.
Bahr
, “
Self-driven propagation of crack arrays: A stationary two-dimensional model
,”
Phys. Rev. E
59
,
1408
(
1999
).
4.
J. G.
McGrath
,
R. D.
Bock
,
J. M.
Cathcart
, and
L. A.
Lyon
, “
Self-assembly of “paint-on” colloidal crystals using poly(styrene-co-N-isopropylacrylamide) spheres
,”
Chem. Mater
19
,
1584
(
2007
).
5.
R.
Weinberger
, “
Evolution of polygonal patterns in stratified mud during desiccation: The role of flaw distribution and layer boundaries
,”
GSA Bull.
113
,
20
(
2001
).
6.
M. S.
Tirumkudulu
, “
Paint and coating physics
,”
Phys. Fluids
35
,
090401
(
2023
).
7.
S.
Kitsunezaki
, “
Crack growth in drying paste
,”
Adv. Powder Technol.
22
,
311
(
2011
).
8.
R.
Mondal
,
H.
Lama
, and
K. C.
Sahu
, “
Physics of drying complex fluid drop: Flow field, pattern formation, and desiccation cracks
,”
Phys. Fluids
35
,
061301
(
2023
).
9.
T.
Divoux
,
E.
Agoritsas
,
S.
Aime
,
C.
Barentin
,
J.-L.
Barrat
,
R.
Benzi
,
L.
Berthier
,
D.
Bi
,
G.
Biroli
,
D.
Bonn
,
P.
Bourrianne
,
M.
Bouzid
,
E.
Del Gado
,
H.
Delanoë-Ayari
,
K.
Farain
,
S.
Fielding
,
M.
Fuchs
,
J.
van der Gucht
,
S.
Henkes
,
M.
Jalaal
,
Y. M.
Joshi
,
A.
Lemaître
,
R. L.
Leheny
,
S.
Manneville
,
K.
Martens
,
W. C. K.
Poon
,
M.
Popović
,
I.
Procaccia
,
L.
Ramos
,
J. A.
Richards
,
S.
Rogers
,
S.
Rossi
,
M.
Sbragaglia
,
G.
Tarjus
,
F.
Toschi
,
V.
Trappe
,
J.
Vermant
,
M.
Wyart
,
F.
Zamponi
, and
D.
Zare
, “
Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions
,”
Soft Matter
20
,
6868
6888
(
2024
).
10.
A. A.
Griffith
, “
VI. The phenomena of rupture and flow in solids
,”
Philos. Trans. R. Soc. A
221
,
582
593
(
1921
).
11.
L.
Goehring
,
A.
Nakahara
,
T.
Dutta
,
S.
Kitsunezaki
, and
S.
Tarafdar
,
Desiccation Cracks and Their Patterns
(
John Wiley & Sons, Ltd
,
2015
).
12.
L.
Goehring
,
W. J.
Clegg
, and
A. F.
Routh
, “
Plasticity and fracture in drying colloidal films
,”
Phys. Rev. Lett.
110
,
024301
(
2013
).
13.
S.
Bohn
,
L.
Pauchard
, and
Y.
Couder
, “
Hierarchical crack pattern as formed by successive domain divisions
,”
Phys. Rev. E
71
,
046214
(
2005
).
14.
A.
Groisman
and
E.
Kaplan
, “
An Experimental Study of Cracking Induced by Desiccation
,”
Europhys. Lett.
25
,
415
(
1994
).
15.
L.
Goehring
,
R.
Conroy
,
A.
Akhter
,
W. J.
Clegg
, and
A. F.
Routh
, “
Evolution of mud-crack patterns during repeated drying cycles
,”
Soft Matter
6
,
3562
(
2010
).
16.
L.
Goehring
,
L.
Mahadevan
, and
S. W.
Morris
, “
Nonequilibrium scale selection mechanism for columnar jointing
,”
Proc. Natl Acad. Sci.
106
,
387
392
(
2009
).
17.
D.
Brutin
,
B.
Sobac
, and
C.
Nicloux
, “
Influence of Substrate Nature on the Evaporation of a Sessile Drop of Blood
,”
J. Heat Transf.
134
,
061101
(
2012
).
18.
N.
Laan
,
F.
Smith
,
C.
Nicloux
, and
D.
Brutin
, “
Morphology of drying blood pools
,”
Forensic Sci. Int.
267
,
104
109
(
2016
).
19.
M.
Léang
,
F.
Giorgiutti-Dauphiné
,
L.-T.
Lee
, and
L.
Pauchard
, “
Crack opening: From colloidal systems to paintings
,”
Soft Matter
13
,
5802
(
2017
).
20.
C.-S.
Tang
,
Y.-J.
Cui
,
A.-M.
Tang
, and
B.
Shi
, “
Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils
,”
Eng. Geol.
114
,
261
266
(
2010
).
21.
F.
Giorgiutti-Dauphiné
and
L.
Pauchard
, “
Elapsed time for crack formation during drying
,”
Eur. Phys. J. E.
37
,
39
(
2014
).
22.
L.
Pauchard
,
F.
Parisse
, and
C.
Allain
, “
Influence of salt content on crack patterns formed through colloidal suspension desiccation
,”
Phys. Rev. E
59
,
3737
(
1999
).
23.
S.
Nag
,
S.
Sinha
,
S.
Sadhukhan
,
T.
Dutta
, and
S.
Tarafdar
, “
Crack patterns in desiccating clay–polymer mixtures with varying composition
,”
J. Phys. Condens. Matter
22
,
015402
(
2009
).
24.
E.
Santanach Carreras
,
F.
Chabert
,
D.
Dunstan
, and
G.
Franks
, “
Avoiding “mud” cracks during drying of thin films from aqueous colloidal suspensions
,”
J. Colloid Interface Sci.
313
,
160
168
(
2007
).
25.
J.
Thiery
,
E.
Keita
,
S.
Rodts
,
D.
Courtier Murias
,
T.
Kodger
,
A.
Pegoraro
, and
P.
Coussot
, “
Drying kinetics of deformable and cracking nano-porous gels
,”
Eur. Phys. J. E
39
,
117
(
2016
).
26.
H.
Lama
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Desiccation cracks in dispersion of ellipsoids: Effect of aspect ratio and applied fields
,”
Phys. Rev. Mater.
2
,
085602
(
2018
).
27.
A. W.
Zaibudeen
and
R.
Bandyopadhyay
, “
DC field coupled evaporation of a sessile gold nanofluid droplet
,”
Soft Matter
17
,
10294
(
2021
).
28.
H.
Lama
,
T.
Gogoi
,
M. G.
Basavaraj
,
L.
Pauchard
, and
D. K.
Satapathy
, “
Synergy between the crack pattern and substrate elasticity in colloidal deposits
,”
Phys. Rev. E
103
,
032602
(
2021
).
29.
S.
Kumar
,
M. G.
Basavaraj
, and
D. K.
Satapathy
, “
Effect of the shape of the confining boundary and particle shape anisotropy on the morphology of desiccation cracks
,”
Langmuir
38
,
7906
(
2022
).
30.
P.
Lilin
,
M.
Ibrahim
, and
I.
Bischofberger
, “
Crack densification in drying colloidal suspensions
,”
Sci. Adv.
10
,
eadp3746
(
2024
).
31.
C.-S.
Tang
,
C.
Zhu
,
Q.
Cheng
,
H.
Zeng
,
J.-J.
Xu
,
B.-G.
Tian
, and
B.
Shi
, “
Desiccation cracking of soils: A review of investigation approaches, underlying mechanisms, and influencing factors
,”
Earth-Sci. Rev.
216
,
103586
(
2021
).
32.
S.
Tarafdar
and
S.
Sinha
, “
Crack formation in drying Laponite
,”
Ind. Eng. Chem. Res.
47
,
6459
(
2008
).
33.
H.
Van Olphen
,
An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists and Soil Scientists
, 2nd ed. (
Wiley
,
New York
,
1977
).
34.
R.
Bandyopadhyay
,
D.
Liang
,
H.
Yardimci
,
D. A.
Sessoms
,
M. A.
Borthwick
,
S. G. J.
Mochrie
,
J. L.
Harden
, and
R. L.
Leheny
, “
Evolution of particle-scale dynamics in an aging clay suspension
,”
Phys. Rev. Lett.
93
,
228302
(
2004
).
35.
B.
Abou
,
D.
Bonn
, and
J.
Meunier
, “
Aging dynamics in a colloidal glass
,”
Phys. Rev. E
64
,
021510
(
2001
).
36.
A.
Knaebel
,
M.
Bellour
,
J.-P.
Munch
,
V.
Viasnoff
,
F.
Lequeux
, and
J. L.
Harden
, “
Aging behavior of Laponite clay particle suspensions
,”
Europhys. Lett.
52
,
73
(
2000
).
37.
T.
Khatun
,
M. D.
Choudhury
,
T.
Dutta
, and
S.
Tarafdar
, “
Electric-field-induced crack patterns: Experiments and simulation
,”
Phys. Rev. E
86
,
016114
(
2012
).
38.
S.
Tarafdar
and
T.
Dutta
, “
Formation of desiccation crack patterns in electric fields: a review
,”
Philos. Trans. R. Soc. A
377
,
20170398
(
2019
).
39.
K.
Suman
and
Y. M.
Joshi
, “
Microstructure and soft glassy dynamics of an aqueous Laponite dispersion
,”
Langmuir
34
,
13079
(
2018
).
40.
B.
Ruzicka
and
E.
Zaccarelli
, “
A fresh look at the Laponite phase diagram
,”
Soft Matter
7
,
1268
(
2011
).
41.
D.
Saha
,
R.
Bandyopadhyay
, and
Y. M.
Joshi
, “
Dynamic light scattering study and DLVO analysis of physicochemical interactions in colloidal suspensions of charged disks
,”
Langmuir
31
,
3012
(
2015
).
42.
S.
Ali
and
R.
Bandyopadhyay
, “
Evaluation of the exfoliation and stability of Na-montmorillonite in aqueous dispersions
,”
Appl. Clay Sci.
114
,
85
92
(
2015
).
43.
S. L.
Tawari
,
D. L.
Koch
, and
C.
Cohen
, “
Electrical Double-Layer Effects on the Brownian Diffusivity and Aggregation Rate of Laponite Clay Particles
,”
J. Colloid Interface Sci.
240
,
54
66
(
2001
).
44.
M.
Delhorme
,
B.
Jönsson
, and
C.
Labbez
, “
Monte Carlo simulations of a clay inspired model suspension: The role of rim charge
,”
Soft Matter
8
,
9691
(
2012
).
45.
R.
Biswas
,
V. R. S.
Parmar
,
A. G.
Thambi
, and
R.
Bandyopadhyay
, “
Correlating microscopic viscoelasticity and structure of an aging colloidal gel using active microrheology and cryogenic scanning electron microscopy
,”
Soft Matter
19
,
2407
(
2023
).
46.
V.
Thrithamara Ranganathan
and
R.
Bandyopadhyay
, “
Effects of aging on the yielding behaviour of acid and salt induced Laponite gels
,”
Colloids Surf. A
522
,
304
309
(
2017
).
47.
C.
Misra
,
V. T.
Ranganathan
, and
R.
Bandyopadhyay
, “
Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®
,”
Soft Matter
17
,
9387
(
2021
).
48.
P.
Gadige
and
R.
Bandyopadhyay
, “
Electric field induced gelation in aqueous nanoclay suspensions
,”
Soft Matter
14
,
6974
(
2018
).
49.
Y.
Tan
,
R.
Wu
,
H.
Li
,
W.
Ren
,
J.
Du
,
S.
Xu
, and
J.
Wang
, “
Electric field-induced gradient strength in nanocomposite hydrogel through gradient crosslinking of clay
,”
J. Mater. Chem. B
3
,
4426
(
2015
).
50.
K. P. S.
Parmar
,
Y.
Méheust
,
B.
Schjelderupsen
, and
J. O.
Fossum
, “
Electrorheological suspensions of Laponite in oil:  Rheometry studies
,”
Langmuir
24
,
1814
(
2008
).
51.
Palak
,
V. R. S.
Parmar
, and
R.
Bandyopadhyay
, “
Growth kinetics of interfacial patterns formed by the radial displacement of an aging viscoelastic suspension
,”
JCIS Open
10
,
100084
(
2023
).
52.
Palak
,
V. R. S.
Parmar
,
D.
Saha
, and
R.
Bandyopadhyay
, “
Pattern selection in radial displacements of a confined aging viscoelastic fluid
,”
JCIS Open
6
,
100047
(
2022
).
53.
L.
Greenspan
, “
Humidity Fixed Points of Binary Saturated Aqueous Solutions
,”
J. Res. Natl. Bur. Stand. A
81A
,
89
(
1977
).
54.
K. F.
DeCarlo
and
N.
Shokri
, “
Effects of substrate on cracking patterns and dynamics in desiccating clay layers
,”
Water Resour. Res.
50
,
3039
3051
, https://doi.org/10.1002/2013WR014466 (
2014
).
55.
P.
Coussot
, “
Scaling approach of the convective drying of a porous medium
,”
Eur. Phys. J. B
15
,
557
(
2000
).
56.
D.
Tran
,
N.
Ralaizafisoloarivony
,
R.
Charlier
,
B.
Mercatoris
,
A.
Léonard
,
D.
Toye
, and
A.
Degré
, “
Studying the effect of desiccation cracking on the evaporation process of a Luvisol – From a small-scale experimental and numerical approach
,”
Soil Tillage Res.
193
,
142
152
(
2019
).
57.
G. W.
Scherer
, “
Aging and drying of gels
,”
J. Non-Cryst. Solids
100
,
77
92
(
1988
).
58.
J.
Blaber
,
B.
Adair
, and
A.
Antoniou
, “
Ncorr: Open-source 2D digital image correlation Matlab software
,”
Exp. Mech.
55
,
1105
(
2015
).
60.
N.
Gavara
, “
Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells
,”
Sci. Rep.
6
,
21267
(
2016
).
61.
T.
Takigawa
,
Y.
Morino
,
K.
Urayama
, and
T.
Masuda
, “
Osmotic Poisson's Ratio and Equilibrium Stress of Poly(acrylamide) Gels
,”
Polym. Gels Netw.
28
,
1012
1013
(
1996
).
62.
T.
Wang
,
D.
Liu
,
C.
Lian
,
S.
Zheng
,
X.
Liu
, and
Z.
Tong
, “
Large deformation behavior and effective network chain density of swollen poly(N-isopropylacrylamide)–Laponite nanocomposite hydrogels
,”
Soft Matter
8
,
774
(
2012
).
63.
U. N.
Arachchige
,
A. R.
Cruden
, and
R.
Weinberg
, “
Laponite gels - visco-elasto-plastic analogues for geological laboratory modelling
,”
Tectonophysics
805
,
228773
(
2021
).
64.
F.
Carrillo
,
S.
Gupta
,
M.
Balooch
,
S. J.
Marshall
,
G. W.
Marshall
,
L.
Pruitt
, and
C. M.
Puttlitz
, “
Nanoindentation of polydimethylsiloxane elastomers: Effect of crosslinking, work of adhesion, and fluid environment on elastic modulus
,”
J. Mater. Res
20
,
2820
(
2005
).
65.
C.
Martin
,
F.
Pignon
,
J.-M.
Piau
,
A.
Magnin
,
P.
Lindner
, and
B.
Cabane
, “
Dissociation of thixotropic clay gels
,”
Phys. Rev. E
66
,
021401
(
2002
).
66.
R. W.
Style
,
S. S. L.
Peppin
, and
A. C. F.
Cocks
, “
Mud peeling and horizontal crack formation in drying clays
,”
J. Geophys. Res. Earth Surf.
116
,
F01025
, https://doi.org/10.1029/2010JF001842 (
2011
).
67.
X.
Ma
,
Z.
Liu
,
W.
Zeng
,
T.
Lin
,
X.
Tian
, and
X.
Cheng
, “
Crack patterns of drying dense bacterial suspensions
,”
Soft Matter
18
,
5239
(
2022
).
68.
M.
Chekchaki
and
V.
Lazarus
, “
Mechanical Stresses Induced by Evaporation in Consolidated Colloidal Suspensions of Hard Particles. Poroelasticity Theory Versus Experiments
,”
Transp. Porous Media
100
,
143
157
(
2013
).
69.
B.
Kruczek
, “
Carman–kozeny equation
,” in
Encyclopedia of Membranes
, edited by
E.
Drioli
and
L.
Giorno
(
Springer Berlin Heidelberg
,
Berlin, Heidelberg
,
2015
), pp.
1
3
.
70.
E. M. S.
Wendt
,
R. R.
Fernandes
,
J. F.
Galdino
,
D. E. V.
Andrade
, and
A. T.
Franco
, “
Experimental evidence of the effect of aging on the yielding and pre-yielding behavior of bentonite and laponite suspensions
,”
J. Rheol.
65
,
1089
1102
(
2021
).
71.
M. J.
Hayes
and
M. I.
Smith
, “
Studying the aging of Laponite suspensions using extensional rheology
,”
Eur. Phys. J. E Soft Matter
45
,
91
(
2022
).
72.
N.
Birk-Braun
,
K.
Yunus
,
E. J.
Rees
,
W.
Schabel
, and
A. F.
Routh
, “
Generation of strength in a drying film: How fracture toughness depends on dispersion properties
,”
Phys. Rev. E
95
,
022610
(
2017
).
73.
P.
Lilin
and
I.
Bischofberger
, “
Criteria for crack formation and air invasion in drying colloidal suspensions
,”
Langmuir
38
,
7442
(
2022
).
74.
A. A.
Chabanov
,
Y.
Jun
, and
D. J.
Norris
, “
Avoiding cracks in self-assembled photonic band-gap crystals
,”
Appl. Phys. Lett.
84
,
3573
3575
(
2004
).
75.
S.
Boukhtache
,
K.
Abdelouahab
,
F.
Berry
,
B.
Blaysat
,
M.
Grédiac
, and
F.
Sur
, “
When Deep Learning Meets Digital Image Correlation
,”
Opt. Lasers Eng.
136
,
106308
(
2021
).
You do not currently have access to this content.