The fault-karst reservoir takes the fault-controlled fracture-cavity system as storage space, which is surrounded by a large number of high permeability zones. The distribution of reservoir seepage field has an important influence on fracture propagation behavior during the hydraulic fracturing process. Based on statistical damage mechanics theory and finite element method, this paper established a seepage-stress coupling numerical model of fracture propagation under the complex medium condition of matrix-cave-natural fracture in fault-karst carbonate reservoir. This new model innovatively considers the effects of matrix seepage, which is generally ignored by the traditional numerical models, for simulating the fluid–solid coupled fracture propagation behavior. The communication mechanism between fracture and cave is first revealed. The influence of geologic and engineering factors, e.g., permeability in high permeability zone around cave and injection rate etc., on hydraulic fracture propagation in fault-karst reservoir is studied. The results show that the high permeability zone around cave can provide sufficient infiltration capacity to communicate fracture with cave in the form of fluid pressure through fluid flow and fluid pressure conduction, even if hydraulic fracture does not directly communicate the cave. Hydraulic fracture is deflected to the direction of cave under the influence of seepage field, but the deflection angle is mostly within 10°. The high permeability of high permeability zone around cave and the short cave offset distance are conducive to the virtual communication between fracture and cave. Communicating fracture with cave in the non-principal stress direction can be accomplished by fluid flow and fluid pressure conduction, optimizing hydraulic fracturing treatment parameters should be performed by choosing lower injection rates and lower fracturing fluid viscosities. This study can provide key technical support and theoretical guidance for oil and gas development in fault-karst reservoir.

1.
M. A.
Yongsheng
,
C. A. I.
Xunyu
,
Y. U. N.
Lu
et al, “
Practice and theoretical and technical progress in exploration and development of Shunbei ultra-deep carbonate oil and gas field, Tarim Basin, NW China
,”
Pet. Explor. Dev.
49
(
1
),
1
20
(
2022
).
2.
Q.
Ren
,
Q.
Jin
,
J.
Feng
et al, “
Design and construction of the knowledge base system for geological outfield cavities classifications: An example of the fracture-cavity reservoir outfield in Tarim basin, NW China
,”
J. Pet. Sci. Eng.
194
,
107509
(
2020
).
3.
H. A. N.
Jun
and
Z.
Jibiao
, “
Development characteristics and formation mechanism of ultra-deep carbonate fault-dissolution body in Shunbei area, Tarim Basin
,”
Pet. Geol. Exp.
43
(
1
),
14
22
(
2021
).
4.
Z.
Yu
,
L.
Haiying
, and
C.
Xiuping
, “
Practice and effect of geology-engineering integration in the development of ultra-deep fault-controlled fractured-vuggy oil/gas reservoirs, Shunbei Area, Tarim Basin
,”
Oil Gas Geol.
43
(
6
),
1466
1480
(
2022
).
5.
F. Z.
Jiao
, “
Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei area, Tarim Basin
,”
Oil Gas Geol.
39
(
2
),
207
216
(
2018
).
6.
N.
Chaozhong
,
S. U. N.
Longde
,
H. U.
Suyun
et al, “
Karst types and characteristics of the Ordovician fracture-cavity type carbonate reservoirs in Halahatang oilfield, Tarim Basin
,”
Acta Pet. Sin.
42
(
1
),
15
(
2021
).
7.
Y. U. N.
Lu
and
D.
Shang
, “
Structural styles of deep strike-slip faults in Tarim Basin and the characteristics of their control on reservoir formation and hydrocarbon accumulation: A case study of Shunbei oil and gas field
,”
Acta Pet. Sin.
43
(
6
),
770
(
2022
).
8.
S.
Liao
,
J.
Hu
, and
Y.
Zhang
, “
Mechanism of hydraulic fracture vertical propagation in deep shale formation based on elastic–plastic model
,”
Eng. Fract. Mech.
295
,
109806
(
2024
).
9.
Q.
Zeng
,
L.
Bo
,
Q.
Li
et al, “
Numerical investigation of hydraulic fracture propagation interacting with bedding planes
,”
Eng. Fract. Mech.
291
,
109575
(
2023
).
10.
L.
Qianli
,
L.
Zhuang
,
G.
Jianchun
et al, “
Numerical investigation of fracture interference effects on multi-fractures propagation in fractured shale
,”
Eng. Fract. Mech.
286
,
109322
(
2023
).
11.
L.
Huang
,
R.
He
,
Z.
Yang
et al, “
Exploring hydraulic fracture behavior in glutenite formation with strong heterogeneity and variable lithology based on DEM simulation
,”
Eng. Fract. Mech.
278
,
109020
(
2023
).
12.
P.
Tan
,
Y.
Jin
, and
H.
Pang
, “
Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method
,”
Eng. Fract. Mech.
248
,
107707
(
2021
).
13.
D.
Xiong
and
X.
Ma
, “
Influence of natural fractures on hydraulic fracture propagation behaviour
,”
Eng. Fract. Mech.
276
,
108932
(
2022
).
14.
J.
Guo
,
Q.
Lu
,
H.
Zhu
et al, “
Perforating cluster space optimization method of horizontal well multi-stage fracturing in extremely thick unconventional gas reservoir
,”
J. Nat. Gas Sci. Eng.
26
,
1648
1662
(
2015
).
15.
M.
Sheng
,
G.
Li
,
D.
Sutula
et al, “
XFEM modeling of multistage hydraulic fracturing in anisotropic shale formations
,”
J. Pet. Sci. Eng.
162
,
801
812
(
2018
).
16.
M.
Chen
,
S.
Zhang
,
S.
Li
et al, “
An explicit algorithm for modeling planar 3D hydraulic fracture growth based on a super-time-stepping method
,”
Int. J. Solids Struct.
191–192
,
370
389
(
2020
).
17.
M.
Chen
,
S.
Zhang
,
X.
Ma
et al, “
A semi-analytical model for predicting fluid partitioning among multiple hydraulic fractures from a horizontal well
,”
J. Pet. Sci. Eng.
171
,
1041
1051
(
2018
).
18.
F.
Zhang
,
J.
Wu
,
H.
Huang
et al, “
Technological parameter optimization for improving the complexity of hydraulic fractures in deep shale reservoirs
,”
Nat. Gas Ind.
41
(
1
),
125
135
(
2021
).
19.
F.
Zhang
and
M.
Mack
, “
Integrating fully coupled geomechanical modeling with microsesmicity for the analysis of refracturing treatment
,”
J. Nat. Gas Sci. Eng.
46
,
16
25
(
2017
).
20.
F.
Shi
,
D.
Wang
, and
X.
Chen
, “
A numerical study on the propagation mechanisms of hydraulic fractures in fracture-cavity carbonate reservoirs
,”
Comput. Model. Eng. Sci.
127
(
2
),
575
598
(
2021
).
21.
Z.
Liu
,
Q.
Lu
,
Y.
Sun
et al, “
Investigation of the influence of natural cavities on hydraulic fracturing using phase field method
,”
Arab. J. Sci. Eng.
44
,
10481
10501
(
2019
).
22.
H.
Zhao
,
Y.
Xie
,
L.
Zhao
et al, “
Simulation of mechanism of hydraulic fracture propagation in fracture-cavity reservoirs
,”
Chem. Technol. Fuels Oils
55
,
814
827
(
2020
).
23.
J. W.
Kao
,
S. M.
Wei
,
W. Z.
Wang
et al, “
Numerical analysis of the hydraulic fracture communication modes in fracture-cavity reservoirs
,”
Pet. Sci.
19
(
5
),
2227
2239
(
2022
).
24.
Y.
Li
,
J.
Mou
,
S.
Zhang
et al, “
Numerical investigation of interaction mechanism between hydraulic fracture and natural karst cave based on seepage-stress-damage coupled model
,”
Energies
15
(
15
),
5425
(
2022
).
25.
Z.
Luo
,
N.
Zhang
,
L.
Zhao
et al, “
Interaction of a hydraulic fracture with a hole in poroelasticity medium based on extended finite element method
,”
Eng. Anal. Boundary Elem.
115
,
108
119
(
2020
).
26.
J.
Qiao
,
X.
Tang
,
M.
Hu
et al, “
The hydraulic fracturing with multiple influencing factors in carbonate fracture-cavity reservoirs
,”
Comput. Geotech.
147
,
104773
(
2022
).
27.
L.
Cheng
,
Z.
Luo
,
Y.
Yu
et al, “
Study on the interaction mechanism between hydraulic fracture and natural karst cave with the extended finite element method
,”
Eng. Fract. Mech.
222
,
106680
(
2019
).
28.
W.
Yujie
,
Z.
Zhennan
,
M.
Jianye
et al, “
Impact of cavity on hydraulic fracture in fracture-cavity carbonate reservoir
,”
Chin. J. Underground Space Eng.
15
(
S1
),
175
181
(
2019
).
29.
J.
Mou
,
Modeling Acid Transport and Non-Uniform Etching in a Stochastic Domain in Acid Fracturing
(
Texas A&M University
,
2009
).
30.
H.
Gao
and
H. A.
Li
, “
Pore structure characterization, permeability evaluation and enhanced gas recovery techniques of tight gas sandstones
,”
J. Nat. Gas Sci. Eng.
28
,
536
547
(
2016
).
31.
L. C.
Li
,
C. A.
Tang
,
G.
Li
et al, “
Numerical simulation of 3D hydraulic fracturing based on an improved flow-stress-damage model and a parallel FEM technique
,”
Rock Mech. Rock Eng.
45
,
801
818
(
2012
).
32.
T.
Li
,
L.
Li
,
Z.
Zhang
et al, “
A coupled hydraulic-mechanical-damage geotechnical model for simulation of fracture propagation in geological media during hydraulic fracturing
,”
J. Pet. Sci. Eng.
173
,
1390
1416
(
2019
).
33.
L. C.
Li
,
C. A.
Tang
,
S. Y.
Wang
et al, “
A coupled thermo-hydrologic-mechanical damage model and associated application in a stability analysis on a rock pillar
,”
Tunnelling Underground Space Technol.
34
,
38
53
(
2013
).
34.
M. A.
Biot
, “
General theory of three-dimensional consolidation
,”
J. Appl. Phys.
12
(
2
),
155
164
(
1941
).
35.
L.
Zhou
and
M. Z.
Hou
, “
A new numerical 3D-model for simulation of hydraulic fracturing in consideration of hydro-mechanical coupling effects
,”
Int. J. Rock Mech. Min. Sci.
60
,
370
380
(
2013
).
36.
S. P.
Li
,
D. X.
Wu
,
W. H.
Xie
et al, “
Effect of confining pressure, pore pressure and specimen dimension on permeability of Yinzhuang Sandstone
,”
Int. J. Rock Mech. Min. Sci.
34
(
3–4
),
175.e1
175.e11
(
1997
).
37.
J.
Zhang
,
M.
Bai
,
J. C.
Roegiers
et al, “
Experimental determination of stress-permeability relationship
,” in
4th ARMA North American Rock Mechanics Symposium
(
OnePetro
,
2000
), Paper No. ARMA-2000-0817.
38.
Z. Z.
Liang
,
C. A.
Tang
,
H. X.
Li
et al, “
Numerical simulation of 3-D failure process in heterogeneous rocks
,”
Int. J. Rock Mech. Min. Sci.
41
,
323
328
(
2004
).
39.
W.
Zhang
and
Y.
Cai
,
Continuum Damage Mechanics and Numerical Applications
(
Springer Science & Business Media
,
2010
).
40.
S. C.
Yuan
and
J. P.
Harrison
, “
Development of a hydro-mechanical local degradation approach and its application to modelling fluid flow during progressive fracturing of heterogeneous rocks
,”
Int. J. Rock Mech. Min. Sci.
42
(
7–8
),
961
984
(
2005
).
41.
L. C.
Li
,
G.
Li
,
C. A.
Tang
et al, “
Modeling of three-dimensional failure process and fluid flow in brittle and heterogeneous rocks
,” in
ISRM International Symposium on Rock Mechanics
(
OnePetro
,
2009
), Paper No. ISRM-SINOROCK-2009-085.
42.
T.
Li
,
C.
Tang
,
J.
Rutqvist
et al, “
The influence of an interlayer on dual hydraulic fractures propagation
,”
Energies
13
(
3
),
555
(
2020
).
43.
C.
Klimczak
,
R. A.
Schultz
,
R.
Parashar
et al, “
Cubic law with aperture-length correlation: Implications for network scale fluid flow
,”
Hydrogeol. J.
18
(
4
),
851
(
2010
).
44.
S. C.
Zhang
,
L. H.
Pan
, and
J.
Zhang
, “
An experimental study of in-situ stresses of carbonate reservoirs in Tahe Oilfield
,”
Chin. J. Rock Mech. Eng.
31
(
S1
),
2888
2893
(
2012
).
45.
H.
Yang
,
L.
Wang
,
Z.
Bi
et al, “
Experimental investigation into the process of hydraulic fracture propagation and the response of acoustic emissions in fracture–cavity carbonate reservoirs
,”
Processes
12
(
4
),
660
(
2024
).
46.
Z.
Wenbiao
,
Z.
Yaxiong
, and
D.
Taizhong
, “
Hierarchy modeling of the Ordovician fault-karst carbonate reservoir in Tuoputai area, Tahe oilfield, Tarim Basin, NW China
,”
Oil Gas Geol.
43
(
1
),
207
218
(
2022
).
47.
J.
Bingyu
,
Z.
Songqing
, and
G.
Hao
, “
On the development technology of fractured-vuggy carbonate reservoirs: A case study on Tahe oilfield and Shunbei oil and gas field
,”
Oil Gas Geol.
43
(
6
),
1459
1465
(
2022
).
48.
B.
Zhou
,
The Internal Architectures in the Strike-Slip Fault Zones and Its Controlling on Reservoir in the Lower Paleozoic of Shunbei Area, Tarim Basin, NW China
(
China University of Geosciences
,
2021
).
49.
Z.
Liu
,
X.
Tang
,
S.
Tao
et al, “
Mechanism of connecting natural caves and wells through hydraulic fracturing in fracture-cavity reservoirs
,”
Rock Mech. Rock Eng.
53
,
5511
5530
(
2020
).
50.
Y. L.
Lu
,
D.
Elsworth
, and
L. G.
Wang
, “
Microcrack-based coupled damage and flow modeling of fracturing evolution in permeable brittle rocks
,”
Comput. Geotech.
49
(
4
),
226
244
(
2013
).
You do not currently have access to this content.