Motivated by flow applications in medicine, biology, and pharmaceuticals, such as intravenous (IV) and gastrointestinal (G) tubes, this study presents a detailed analysis of viscoelastic fluids infiltrating narrow channels, specifically those with cylindrical or rectangular cross sections. The creeping flow is driven by an unsteady decaying pressure gradient and a v-dependent body force accommodating porous channels and media. By employing the Navier–Stokes equation alongside the linear viscoelastic constitutive model, we derive and dimensionalize the governing equations, bringing attention to key parameters which include the Weissenberg number (Wi). The nature of these equations necessitates using the separation of variables technique, where the Sturm–Liouville theorem is applied to achieve a spectral decomposition of the coupled dependent variables. This approach allows us to identify a geometric parameter resulting in temporal Volterra Integro-Differential equations, thus moving beyond the traditional Hagen–Poiseuille profile to accurately capture the unsteady velocity profile. Using a robust and efficient fourth-order Runge–Kutta numerical scheme, we generate, plot, and compare the kinematic characteristics of rectangular and cylindrical ducts, highlighting the similarities and differences between viscoelastic and purely viscous fluids. Additionally, we perform three perturbation analyses: first, treating the Weissenberg number as a small parameter (Wi1) to explore the cumulative effects of viscoelasticity on the base purely viscous case; second, examining the long-term approximation by stretching the timescale; and finally, investigating the short-term approximation by compressing the timescale. The plots demonstrate that the short- and long-term approximations offer accurate predictions of the corresponding short- and long-term dynamics of the system. Additionally, the plots reveal that, when comparing a square channel to a circular channel with an identical area-to-perimeter ratio, the kinematics of the square channel generally dominate throughout most of the time evolution, although strong viscoelastic effects intermittently disrupt this trend. These analyses offer a comprehensive insight into the flow's long- and short-term characteristics. Consequently, the interaction between momentum transport, viscous dissipation, fluid porosity, fluid memory effects (Wi), and conduit geometry is emphasized—supported by kinematic plots.

1.
Y.
Su
,
A.
Castillo
,
O.
Shun Pak
,
L.
Zhu
, and
R.
Zenit
, “
Viscoelastic levitation
,”
J. Fluid Mech.
943
,
A23
(
2022
).
2.
A. M.
Faheem
and
D. H.
Abdelkader
, “
1—Novel drug delivery systems
,” in
Engineering Drug Delivery Systems
, Woodhead Publishing Series in Biomaterials, edited by
A.
Seyfoddin
,
S.
Masoomi Dezfooli
, and
C. A.
Greene
(
Woodhead Publishing
,
2020
).
3.
F.
Shen
,
M.
Ai
,
Z.
Li
,
X.
Lu
,
Y.
Pang
, and
Z.
Liu
, “
Pressure measurement methods in microchannels: Advances and applications
,”
Microfluid. Nanofluid.
25
(
5
),
39
(
2021
).
4.
M.
Mahmoodi
,
M.
Nili-Ahmadabadi
,
A.
Minaeian
,
M. R.
Tavakoli
,
M.
Norouzi
, and
K. C.
Kim
, “
Secondary flow structures in developing viscoelastic fluid flow through curved ducts with square cross section
,”
Meccanica
56
(
12
),
2979
2999
(
2021
).
5.
A.
Lanzaro
, “
A microfluidic approach to studying the injection flow of concentrated albumin solutions
,”
SN Appl. Sci.
3
(
9
),
783
(
2021
).
6.
M. J.
Manton
, “
Low Reynolds number flow in slowly varying axisymmetric tubes
,”
J. Fluid Mech.
49
(
3
),
451
459
(
1971
).
7.
S.
Sisavath
,
X.
Jing
, and
R. W.
Zimmerman
, “
Creeping flow through a pipe of varying radius
,”
Phys. Fluids
13
(
10
),
2762
2772
(
2001
).
8.
A.
Lahbabi
and
H.-C.
Chang
, “
Flow in periodically constricted tubes: Transition to inertial and nonsteady flows
,”
Chem. Eng. Sci.
41
(
10
),
2487
2505
(
1986
).
9.
M.
Hemmat
and
A.
Borhan
, “
Creeping flow through sinusoidally constricted capillaries
,”
Phys. Fluids
7
(
9
),
2111
2121
(
1995
).
10.
J. A.
Deiber
and
W. R.
Schowalter
, “
Flow through tubes with sinusoidal axial variations in diameter
,”
AlChE. J.
25
(
4
),
638
645
(
1979
).
11.
S. P.
Sutera
and
R.
Skalak
, “
The history of Poiseuille's law
,”
Annu. Rev. Fluid Mech.
25
(
1
),
1
20
(
1993
).
12.
C.
Chicone
, “
Chapter 12: Flow in a pipe
,” in
An Invitation to Applied Mathematics
(
Academic Press
,
2017
), pp.
321
326
.
13.
R. J.
Leite
, “
An experimental investigation of the stability of Poiseuille flow
,”
J. Fluid Mech.
5
(
1
),
81
96
(
1959
).
14.
A.
Davey
and
P. G.
Drazin
, “
The stability of Poiseuille flow in a pipe
,”
J. Fluid Mech.
36
(
2
),
209
218
(
1969
).
15.
T.
Fukuchi
, “
Numerical calculation of fully-developed laminar flows in arbitrary cross-sections using finite difference method
,”
AIP Adv.
1
(
4
),
042109
(
2011
).
16.
Z.
Liang
and
H.-L.
Tsai
, “
A method to generate pressure gradients for molecular simulation of pressure-driven flows in nanochannels
,”
Microfluid. Nanofluid.
13
(
2
),
289
298
(
2012
).
17.
M.
Kumar Moharana
and
S.
Khandekar
, “
Generalized formulation for estimating pressure drop in fully-developed laminar flow in singly and doubly connected channels of non-circular cross-sections
,”
Comput. Methods Appl. Mech. Eng.
259
,
64
76
(
2013
).
18.
J.
Koplik
,
J. R.
Banavar
, and
J. F.
Willemsen
, “
Molecular dynamics of Poiseuille flow and moving contact lines
,”
Phys. Rev. Lett.
60
,
1282
1285
(
1988
).
19.
U. R.
Sumanasekara
,
M. N.
Azese
, and
S.
Bhattacharya
, “
Transient penetration of a viscoelastic fluid in a narrow capillary channel
,”
J. Fluid Mech.
830
,
528
552
(
2017
).
20.
M. N.
Azese
, “
On the detection, measurement, and characterization of slip-velocity in Couette-rheology involving viscoelastic liquids
,”
Phys. Fluids
31
(
2
),
023101
(
2019
).
21.
S.
Bhattacharya
,
M. N.
Azese
, and
S.
Singha
, “
Rigorous theory for transient capillary imbibition in channels of arbitrary cross section
,”
Theor. Comput. Fluid Dyn.
31
(
2
),
137
157
(
2017
).
22.
M. N.
Azese
, “
Measurement and characterization of slippage and slip-law using a rigorous analysis in dynamics of oscillating rheometer: Newtonian fluid
,”
Phys. Fluids
30
(
2
),
023103
(
2018
).
23.
V.
Avsarkisov
,
M.
Oberlack
, and
S.
Hoyas
, “
New scaling laws for turbulent Poiseuille flow with wall transpiration
,”
J. Fluid Mech.
746
,
99
122
(
2014
).
24.
G. P.
Galdi
,
K.
Pileckas
, and
A. L.
Silvestre
, “
On the unsteady Poiseuille flow in a pipe
,”
Z Angew. Math. Phys.
58
(
6
),
994
1007
(
2007
).
25.
M.
Manna
,
A.
Vacca
, and
R.
Verzicco
, “
Pulsating spiral Poiseuille flow
,”
J. Fluid Mech.
890
,
A21
(
2020
).
26.
K. R.
Rajagopal
, “
A note on unsteady unidirectional flows of a non-Newtonian fluid
,”
Int. J. Non-Linear Mech.
17
(
5
),
369
373
(
1982
).
27.
P.
Panaseti
,
Y.
Damianou
,
G. C.
Georgiou
, and
K. D.
Housiadas
, “
Pressure-driven flow of a Herschel-Bulkley fluid with pressure-dependent rheological parameters
,”
Phys. Fluids
30
(
3
),
030701
(
2018
).
28.
A.
Kalogirou
,
S.
Poyiadji
, and
G. C.
Georgiou
, “
Incompressible Poiseuille flows of Newtonian liquids with a pressure-dependent viscosity
,”
J. Non-Newtonian Fluid Mech.
166
(
7
),
413
419
(
2011
).
29.
Y. S.
Muzychka
and
M. M.
Yovanovich
, “
Unsteady viscous flows and Stokes's first problem
,”
Int. J. Therm. Sci.
49
(
5
),
820
828
(
2010
).
30.
Y. S.
Muzychka
and
M. M.
Yovanovich
, “
Compact models for transient conduction or viscous transport in non-circular geometries with a uniform source
,”
Int. J. Therm. Sci.
45
(
11
),
1091
1102
(
2006
).
31.
M. N.
Azese
,
J. J.
Engola
,
J.
Hona
,
E.
Jean Yap
, and
Y. C.
Mbono Samba
, “
Examining capillary dynamics in rectangular and circular conduits subject to unsteady surface tension
,”
J. Fluid Mech.
949
,
A6
(
2022
).
32.
M. N.
Azese
, “
Modified time-dependent penetration length and inlet pressure field in rectangular and cylindrical channel flows driven by non-mechanical forces
,”
J. Fluids Eng.
133
(
11
),
111205
(
2011
).
33.
P. E.
Rouse
, Jr.
, “
A theory of the linear viscoelastic properties of dilute solutions of coiling polymers
,”
J. Chem. Phys.
21
(
7
),
1272
1280
(
1953
).
34.
I.
Chaudhary
,
P.
Garg
,
V.
Shankar
, and
G.
Subramanian
, “
Elasto-inertial wall mode instabilities in viscoelastic plane Poiseuille flow
,”
J. Fluid Mech.
881
,
119
163
(
2019
).
35.
H.
Feng
,
A.
Barua
,
S.
Li
, and
X.
Li
, “
Boundary integral simulations of boundary layers in linear viscoelastic flow
,”
Phys. Fluids
35
(
2
),
023108
(
2023
).
36.
C.
Fetecau
,
I. A.
Mirza
,
D.
Vieru
, and
N. A.
Shah
, “
Remarks on some unidirectional flows of Maxwell fluids through a rectangular channel filled with porous medium
,”
ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Mech.
104
(
5
),
e202300827
(
2024
).
37.
A. K.
Saini
,
S.
Singh Chauhan
, and
A.
Tiwari
, “
Asymptotic analysis of Jeffreys–Newtonian fluids flowing through a composite vertical porous layered channel: Brinkman–Forchheimer model
,”
Phys. Fluids
35
(
12
),
123118
(
2023
).
38.
M. N.
Azese
, “
In an attempt to generalize wall slip in fluid flows using a series expansion of the wall shear stress: Case of non-Newtonian [Phan–Thien–Tanner fluid]
,”
Eur. J. Mech., B: Fluids
52
,
109
119
(
2015
).
39.
P.
Kumar Mohanty
,
R. P.
Bharti
, and
A. K.
Sahu
, “
Influence of solvent viscosity ratio on the creeping flow of viscoelastic fluid over a channel confined circular cylinder
,”
Phys. Fluids
36
(
7
),
073103
(
2024
).
40.
A. M.
Ribau
,
L. L.
Ferras
,
M. L.
Morgado
,
M.
Rebelo
,
F. T.
Pinho
, and
A. M.
Afonso
, “
Analytical study of the annular flow of a generalised Phan-Thien–Tanner fluid
,”
Acta Mech.
235
(
2
),
1307
1317
(
2024
).
41.
M. N.
Azese
,
V. N.
Nsoga
,
B. J. A.
Mvondo
,
O. D.
Makinde
,
G.
Batjom Batjom
, and
H. S.
Kouaji
, “
Transient dynamics of pressure-driven encroachment in narrow conduits with rate-dependent body force
,”
Phys. Fluids
35
(
1
),
013601
(
2023
).
42.
M. N.
Azese
, “
Rapid variable-step computation of dynamic convolutions and Volterra-type integro-differential equations: RK45 Fehlberg, RK4
,”
Heliyon
10
(
13
),
e33737
(
2024
).
43.
M. N.
Azese
, “
Optimizing linear/non-linear Volterra-type integro-differential equations with Runge–Kutta 2 and 4 for time efficiency
,”
Sci. Afr.
e02443
(
2024
).
44.
U. S.
Mahabaleshwar
,
K. R.
Nagaraju
,
P. N.
Vinay Kumar
, and
M. N.
Azese
, “
Effect of radiation on thermosolutal Marangoni convection in a porous medium with chemical reaction and heat source/sink
,”
Phys. Fluids
32
(
11
),
113602
(
2020
).
45.
J.
Koplik
,
H.
Levine
, and
A.
Zee
, “
Viscosity renormalization in the brinkman equation
,”
Phys. Fluids
26
(
10
),
2864
2870
(
1983
).
46.
J.
Latikka
and
H.
Eskola
, “
The electrical conductivity of human cerebrospinal fluid in vivo
,” in
World Congress on Medical Physics and Biomedical Engineering 2018
, edited by
L.
Lhotska
,
L.
Sukupova
,
I.
Lacković
, and
G. S.
Ibbott
(
Springer Nature Singapore
,
Singapore
,
2019
), pp.
773
776
.
47.
Y.
Damianou
,
M.
Philippou
,
G.
Kaoullas
, and
G. C.
Georgiou
, “
Cessation of viscoplastic Poiseuille flow with wall slip
,”
J. Non-Newtonian Fluid Mech.
203
,
24
37
(
2014
).
48.
M.-H.
Chang
,
F.
Chen
, and
B.
Straughan
, “
Instability of Poiseuille flow in a fluid overlying a porous layer
,”
J. Fluid Mech.
564
,
287
303
(
2006
).
49.
C.-O.
Ng
and
C. Y.
Wang
, “
Starting Poiseuille flow in a circular tube with two immiscible fluids
,”
J. Fluids Eng.
141
(
3
),
031201
(
2019
).
50.
M. N.
Azese
, “
On the generalization of velocity slip in fluid flows using a steady-state series expansion of the wall shear stress: Case of simple Newtonian fluids
,”
Eur. J. Mech., B: Fluids
57
,
204
213
(
2016
).
51.
B. K.
Jha
and
D.
Gambo
, “
Role of exponentially decaying/growing time-dependent pressure gradient on unsteady Dean flow: A Riemann-sum approximation approach
,”
Arab J. Basic Appl. Sci.
28
(
1
),
1
10
(
2021
).
52.
V. M.
Soundalgekar
, “
The flow of an elastico–viscous fluid in a circular tube under pressure gradients varying exponentially with time
,”
Chem. Eng. Sci.
28
(
2
),
654
655
(
1973
).
53.
M.
Akbari
,
D.
Sinton
, and
M.
Bahrami
, “
Viscous flow in variable cross-section microchannels of arbitrary shapes
,”
Int. J. Heat Mass Transfer
54
(
17
),
3970
3978
(
2011
).
54.
M.
Bahrami
,
M.
Michael Yovanovich
, and
J.
Richard Culham
, “
A novel solution for pressure drop in singly connected microchannels of arbitrary cross-section
,”
Int. J. Heat Mass Transfer
50
(
13
),
2492
2502
(
2007
).
55.
A.
Verma
and
G.
Tomar
, “
A continuous one-domain framework for fluid flow in superposed clear and porous media
,”
J. Comput. Phys.
495
,
112554
(
2023
).
56.
P.
Daripa
and
C.
Gin
, “
Studies on dispersive stabilization of porous media flows
,”
Phys. Fluids
28
(
8
),
082105
(
2016
).
57.
Z. W.
Zeng
and
R.
Grigg
, “
A criterion for non-Darcy flow in porous media
,”
Transp. Porous Media
63
(
1
),
57
69
(
2006
).
58.
A. K.
Saini
,
S.
Singh Chauhan
, and
A.
Tiwari
, “
Creeping flow of non-Newtonian fluid through membrane of porous cylindrical particles: A particle-in-cell approach
,”
Phys. Fluids
35
(
4
),
043101
(
2023
).
59.
A. K.
Saini
,
S.
Singh Chauhan
, and
A.
Tiwari
, “
Asymptotic analysis of electrohydrodynamic flow through a swarm of porous cylindrical particles
,”
Phys. Fluids
36
(
4
),
041910
(
2024
).
60.
S.
Gupta
,
W. S.
Wang
, and
S. A.
Vanapalli
, “
Microfluidic viscometers for shear rheology of complex fluids and biofluids
,”
Biomicrofluidics
10
(
4
),
043402
(
2016
).
61.
J. M.
Barakat
,
S. M.
Ahmmed
,
S. A.
Vanapalli
, and
E. S. G.
Shaqfeh
, “
Pressure-driven flow of a vesicle through a square microchannel
,”
J. Fluid Mech.
861
,
447
483
(
2019
).
62.
S.
Navardi
,
S.
Bhattacharya
, and
M. N.
Azese
, “
Analytical expression for velocity profiles and flow resistance in channels with a general class of noncircular cross sections
,”
J. Eng. Math.
99
,
103
118
(
2016
).
63.
M.
Torralba
,
J. R.
Castrejón-Pita
,
A. A.
Castrejón-Pita
,
G.
Huelsz
,
J. A.
del Río
, and
J.
Ortín
, “
Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids
,”
Phys. Rev. E
72
(
1
),
016308
(
2005
).
64.
M.
Zhang
,
W.
Zhang
,
Z.
Wu
,
Y.
Shen
,
H.
Wu
,
J.
Cheng
,
H.
Zhang
,
F.
Li
, and
W.
Cai
, “
Modulation of viscoelastic fluid response to external body force
,”
Sci. Rep.
9
,
9402
(
2019
).
65.
M.
Ma
,
J.
Ouyang
, and
X.
Wang
, “
A high-order SRCR-DG method for simulating viscoelastic flows at high Weissenberg numbers
,”
Eng. Comput.
39
(
5
),
3041
3059
(
2023
).
66.
R. E.
Khayat
and
N.
Ashrafi
, “
A low-dimensional approach to nonlinear plane-Poiseuille flow of viscoelastic fluids
,”
Phys. Fluids
14
(
5
),
1757
1767
(
2002
).
67.
R. A.
Keiller
, “
Numerical instability of time-dependent flows
,”
J. Non-Newtonian Fluid Mech.
43
(
2–3
),
229
246
(
1992
).
68.
P.
Constantin
,
J.
Wu
,
J.
Zhao
, and
Y.
Zhu
, “
High Reynolds number and high Weissenberg number Oldroyd-B model with dissipation
,”
J. Evol. Equations
21
(
3, SI
),
2787
2806
(
2021
).
69.
J. D.
Evans
, “
Re-entrant corner flows of upper convected Maxwell fluids: The small and high Weissenberg number limits
,”
Proc. R. Soc. A
462
(
2076
),
3749
3774
(
2006
).
70.
M.
Aboubacar
,
H.
Matallah
,
H. R.
Tamaddon-Jahromi
, and
M. F.
Webster
, “
Numerical prediction of extensional flows in contraction geometries: Hybrid finite volume/element method
,”
J. Non-Newtonian Fluid Mech.
104
(
2
),
125
164
(
2002
).
71.
M.
Renardy
, “
Nonlinear stability of flows of Jeffreys fluids at low Weissenberg numbers
,”
Arch. Ration. Mech. Anal.
132
(
1
),
37
48
(
1995
).
72.
K. B.
Kiradjiev
,
C. J. W.
Breward
, and
I. M.
Griffiths
, “
Surface-tension- and injection-driven spreading of a thin viscous film
,”
J. Fluid Mech.
861
,
765
795
(
2019
).
You do not currently have access to this content.