The four-dimensional (4D) printing concept, defined as a targeted change in material properties under stimuli such as water, ultraviolet (UV) exposure, and heat, has been under the spotlight in recent years due to its promising functionalities and design freedom for food applications. However, there is little progress in food applicability and compatibility compared to materials science. The complexity of food, poor response, and lack of trigger mechanisms are the major problems for expanding the 4D printing concept with edible ingredients. Therefore, exploring the possible mechanisms using edible materials to implement engineering-driven predictive changes in food applications is of significant interest. This study investigated the use of model systems composed of food biopolymer solutions (gum tragacanth and gelatin at 0.5, 2.5, and 5% w/v) and their swelling behavior in distilled water and salt (0.5 M CaCl2) solution to control the water uptake rate. In this respect, the film-forming solutions were prepared, the films were cast in Petri dishes (5–20 ml), and the film thickness and moisture content values were recorded. Their swelling properties were determined in two different media (water immersion and salt solution immersion tests). The viscoelastic properties of selected film-forming solutions were analyzed. The thickness of the films increased with the increased poured volume of the film-forming solution (P < 0.05). The biopolymer type and concentration had a significant effect on the physical properties of the films. All samples exhibited shear-thinning behavior and frequency dependency with elastic or viscous dominant properties.

1.
M.
Shahbazi
and
H.
Jäger
, “
Current status in the utilization of biobased polymers for 3D Printing process: A systematic review of the materials, processes, and challenges
,”
ACS Appl. Bio Mater.
4
(
1
),
325
369
(
2021
).
2.
E.
Pulatsu
,
J.-W.
Su
,
J.
Lin
, and
M.
Lin
, “
Utilization of ethyl cellulose in the osmotically-driven and anisotropically-actuated 4D printing concept of edible food composites
,”
Carbohydr. Polym. Technol. Appl.
3
,
100183
(
2022
).
3.
A. F.
Ghazal
,
M.
Zhang
,
A. S.
Mujumdar
, and
M.
Ghamry
, “
Progress in 4D/5D/6D printing of foods: Applications and R&D opportunities
,”
Crit. Rev. Food Sci. Nutr.
63
(25),
7399
7422
(
2022
).
4.
E.
Pulatsu
and
C.
Udenigwe
, “
Perspectives, analyses, and progress in additive manufacturing of food
,”
Phys. Fluids
35
(
3
),
31303
(
2023
).
5.
E.
Pulatsu
and
M.
Lin
, “
A review on customizing edible food materials into 3D printable inks: Approaches and strategies
,”
Trends Food Sci. Technol.
107
,
68
77
(
2021
).
6.
Abdullah
,
J.
Weiss
,
T.
Ahmad
,
C.
Zhang
, and
H.
Zhang
, “
A review of recent progress on high internal-phase Pickering emulsions in food science
,”
Trends Food Sci. Technol.
106
,
91
103
(
2020
).
7.
M.
Ghebremedhin
,
M.
Baechle
, and
T. A.
Vilgis
, “
Meat-, vegetarian-, and vegan sausages: Comparison of mechanics, friction, and structure
,”
Phys. Fluids
34
(
4
),
047112
(
2022
).
8.
M. A.
Via
,
M.
Baechle
,
A.
Stephan
,
T. A.
Vilgis
, and
M. P.
Clausen
, “
Microscopic characterization of fatty liver-based emulsions: Bridging microstructure and texture in foie gras and pâté
,”
Phys. Fluids
33
(
11
),
117119
(
2021
).
9.
I.
Gupta
,
L.
Cherwoo
,
R.
Bhatia
, and
H.
Setia
, “
Biopolymers: Implications and application in the food industry
,”
Biocatal. Agric. Biotechnol.
46
,
102534
(
2022
).
10.
M. R.
Ansorena
,
M.
Pereda
, and
N. E.
Marcovich
, in
Polymers for Food Applications
(
Springer International Publishing
,
Cham
,
2018
), pp.
5
24
.
11.
Y.
Tao
,
Y. C.
Lee
,
H.
Liu
,
X.
Zhang
,
J.
Cui
,
C.
Mondoa
,
M.
Babaei
,
J.
Santillan
,
G.
Wang
,
D.
Luo
,
D.
Liu
,
H.
Yang
,
Y.
Do
,
L.
Sun
,
W.
Wang
,
T.
Zhang
, and
L.
Yao
, “
Morphing pasta and beyond
,”
Sci. Adv.
7
(
19
),
1
10
(
2021
).
12.
H.
Wang
,
W.
Yao
,
L.
Zhang
,
T.
Cheng
,
C. Y.
Levinein
, and
D.
Ishii
, in
Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems
(
ACM
,
2017
), pp.
6123
6132
.
13.
P.
Phuhongsung
,
M.
Zhang
, and
B.
Bhandari
,
4D Printing of Products Based on Soy Protein Isolate via Microwave Heating for Flavor Development
(
Elsevier Ltd
,
2020
).
14.
F.
Chen
,
M.
Zhang
,
Z.
Liu
, and
B.
Bhandari
, “
4D deformation based on double-layer structure of the pumpkin/paper
,”
Food Struct.
27
,
100168
(
2021
).
15.
C.
Guo
,
M.
Zhang
, and
S.
Devahastin
, “
Color/aroma changes of 3D-Printed buckwheat dough with yellow flesh peach as triggered by microwave heating of gelatin-gum Arabic complex coacervates
,”
Food Hydrocoll.
112
,
106358
(
2021
).
16.
M. V.
D'Angelo
,
L.
Pauchard
,
H.
Auradou
, and
B.
Darbois Texier
, “
Shaping gels and gels mixture to create helices
,”
Phys. Fluids
34
(
7
),
077116
(
2022
).
17.
P. K.
Singh
,
M. L.
Pacholski
,
J.
Gu
,
Y. K.
Go
,
G.
Singhal
,
C.
Leal
,
P. V.
Braun
,
K. A.
Patankar
,
R.
Drumright
,
S. A.
Rogers
, and
C. M.
Schroeder
, “
Designing multicomponent polymer colloids for self-stratifying films
,”
Langmuir
38
(
37
),
11160
11170
(
2022
).
18.
T.
Garrido
,
J.
Uranga
,
P.
Guerrero
, and
K.
de la Caba
, in
Polymers for Food Applications
(
Springer International Publishing
,
Cham
,
2018
), pp.
25
59
.
19.
S.
Tireki
,
G.
Sumnu
, and
S.
Sahin
, “
Investigation of average crosslink distance and physicochemical properties of gummy candy during storage: Effect of formulation and storage temperature
,”
Phys. Fluids
35
(
5
),
053115
(
2023
).
20.
G.
Lorenzo
,
N.
Zaritzky
, and
A.
Califano
, in
Polymers for Food Applications
(
Springer International Publishing
,
Cham
,
2018
), pp.
481
507
.
21.
E.
Tekin Pulatsü
,
S.
Sahin
, and
G.
Sumnu
, “
Characterization of different double-emulsion formulations based on food-grade emulsifiers and stabilizers
,”
J. Dispers. Sci. Technol.
39
(
7
),
996
1002
(
2018
).
22.
S.
Barak
,
D.
Mudgil
, and
S.
Taneja
, “
Exudate gums: Chemistry, properties and food applications—A review
,”
J. Sci. Food Agric.
100
(
7
),
2828
2835
(
2020
).
23.
Food Hydrocolloids
, edited by
M.
Glicksman
(
CRC Press
,
2019
).
24.
S.
Featherstone
,
A Complete Course in Canning and Related Processes
(
Elsevier
,
2015
), pp.
147
211
.
25.
N.
Molaahmadi Bahraseman
,
H.
Shekarchizadeh
, and
S. A. H.
Goli
, “
Thermodynamic compatibility of gelatin and tragacanth gum in aqueous systems
,”
Food Chem.
373
,
131584
(
2022
).
26.
J.
Gong
,
L.
Wang
,
J.
Wu
,
Y.
Yuan
,
R.-J.
Mu
,
Y.
Du
,
C.
Wu
, and
J.
Pang
, “
The rheological and physicochemical properties of a novel thermosensitive hydrogel based on Konjac glucomannan/gum tragacanth
,”
LWT
100
,
271
277
(
2019
).
27.
M.
Nejatian
,
S.
Abbasi
, and
F.
Azarikia
, “
Gum Tragacanth: Structure, characteristics and applications in foods
,”
Int. J. Biol. Macromol.
160
,
846
860
(
2020
).
28.
A.
Dick
,
B.
Bhandari
, and
S.
Prakash
, “
Printability and textural assessment of modified-texture cooked beef pastes for dysphagia patients
,”
Futur. Foods
3
(
December
),
100006
(
2021
).
29.
N.
Li
,
D.
Qiao
,
S.
Zhao
,
Q.
Lin
,
B.
Zhang
, and
F.
Xie
, “
3D printing to innovate biopolymer materials for demanding applications: A review
,”
Mater. Today Chem.
20
,
100459
(
2021
).
30.
S.
Holland
,
T.
Foster
,
W.
MacNaughtan
, and
C.
Tuck
, “
Design and characterisation of food grade powders and inks for microstructure control using 3D printing
,”
J. Food Eng.
220
,
12
19
(
2018
).
31.
T.
Ma
,
L.
Lv
,
C.
Ouyang
,
X.
Hu
,
X.
Liao
,
Y.
Song
, and
X.
Hu
, “
Rheological behavior and particle alignment of cellulose nanocrystal and its composite hydrogels during 3D printing
,”
Carbohydr. Polym.
253
(
October
),
117217
(
2021
).
32.
Y.
Wang
,
L.
Han
,
W.
Yu
,
W.
Zhao
,
J.
Pan
,
S.
Prakash
, and
X.
Dong
, “
Carrageenan addition improves the melting temperature and 3D printing performance of the gelatin system
,”
Food Hydrocoll.
144
,
108918
(
2023
).
33.
X.
Nqoro
,
R.
Taziwa
, and
P.
Popoola
, “
Recent progress in the conversion of agricultural waste into functional materials
,”
Biomass Convers. Biorefinery
(
2023
).
34.
S.
Mallakpour
,
F.
Tabesh
, and
C. M.
Hussain
, “
Potential of tragacanth gum in the industries: A short journey from past to the future
,”
Polym. Bull.
80
(
5
),
4643
4662
(
2023
).
35.
B.
Wu
,
B.
Degner
, and
D. J.
McClements
, “
Soft matter strategies for controlling food texture: Formation of hydrogel particles by biopolymer complex coacervation
,”
J. Phys: Condens. Matter
26
(
46
),
464104
(
2014
).
36.
A.
Aydogdu
,
E.
Kirtil
,
G.
Sumnu
,
M. H.
Oztop
, and
Y.
Aydogdu
, “
Utilization of lentil flour as a biopolymer source for the development of edible films
,”
J. Appl. Polym. Sci.
135
(
23
),
46356
(
2018
).
37.
D.
Khodaei
,
K.
Oltrogge
, and
Z.
Hamidi-Esfahani
, “
Preparation and characterization of blended edible films manufactured using gelatin, tragacanth gum and, Persian gum
,”
LWT
117
,
108617
(
2020
).
38.
S.
Ferreira
,
V. R.
Nicoletti
, and
M.
Dragosavac
, “
Novel methods to induce complex coacervation using dual fluid nozzle and metal membranes: Part II – Use of metal membrane technology to induce complex coacervation
,”
Food Bioprod. Process.
139
,
46
60
(
2023
).
39.
D.
Bonn
,
M. M.
Denn
,
L.
Berthier
,
T.
Divoux
, and
S.
Manneville
, “
Yield stress materials in soft condensed matter
,”
Rev. Mod. Phys.
89
(
3
),
35005
(
2017
).
40.
D. J.
McClements
, “
Modeling the rheological properties of plant‐based foods: Soft matter physics principles
,”
Sustainable Food Proteins
1
(
3
),
101
132
(
2023
).
41.
L.
Zhang
,
Z.
Liu
,
X.
Han
,
Y.
Sun
, and
X.
Wang
, “
Effect of ethanol content on rheology of film-forming solutions and properties of zein/chitosan film
,”
Int. J. Biol. Macromol.
134
,
807
814
(
2019
).
42.
Q.
Ma
,
L.
Du
,
Y.
Yang
, and
L.
Wang
, “
Rheology of film-forming solutions and physical properties of tara gum film reinforced with polyvinyl alcohol (PVA)
,”
Food Hydrocoll.
63
,
677
684
(
2017
).
43.
E.
Pulatsu
,
S.
Malik
,
M.
Lin
,
K.
Krishnaswamy
, and
B.
Vardhanabhuti
, “
Preparation and characterization of boza enriched with nonfat dry milk and its impact on the fermentation process
,”
Gels
10
(
1
),
22
(
2023
).
You do not currently have access to this content.