Recent studies highlight the significant role of pore geometry and wettability in determining fluid–fluid interface dynamics in two-phase flow in porous media. However, current entry capillary pressure equations, rooted in the Young–Laplace equation, consider only cross-sectional details and apply wettability data measured on flat surfaces to complex three-dimensional (3D) pore structures, overlooking the coupled effect of contact angle and pore morphologies along the flow direction. This study employs the volume-of-fluid method to investigate the following: (a) How do combined effects of pore geometry and wettability control capillary pressure change, displacement efficiency, and residual saturations? (b) Can continuous two-phase flow be achieved at the pore scale? Through direct numerical simulations in constricted idealized-geometry capillary tubes and real pore structures, we vary the contact angle to characterize its impact on fluid–fluid interface morphology, entry capillary pressure (pce), and displacement efficiency. Our results show that during the drainage, pce temporarily decreases/turns negative under intermediate wettability conditions due to forced curvature rearrangement/reversal in the converging section. Local orientation angles along the flow direction are important in controlling the interface morphology and pce evolution. Moreover, intermediate contact angles enhance displacement efficiency due to curvature reversal, while insufficient corner flow during imbibition causes pore snap-off of the receding fluid, leading to higher residual saturation. The results challenge conventional methods in predicting entry capillary pressure, highlighting the need for incorporating 3D geometry in predictive models. Eventually, the insights underscore the importance of considering corner flow in controlling displacement efficiency within constricted geometries in pore network modelling studies.

1.
J. M.
Nordbotten
,
M. A.
Celia
, and
S.
Bachu
, “
Injection and storage of CO2 in deep saline aquifers: Analytical solution for CO2 plume evolution during injection
,”
Transp. Porous Media
58
,
339
360
(
2005
).
2.
C.
Doughty
, “
Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation
,”
Transp. Porous Media
82
,
49
76
(
2010
).
3.
P.
Carden
and
L.
Paterson
, “
Physical, chemical and energy aspects of underground hydrogen storage
,”
Int. J. Hydrogen Energy
4
,
559
569
(
1979
).
4.
E. M.
Thaysen
,
I. B.
Butler
,
A.
Hassanpouryouzband
,
D.
Freitas
,
F.
Alvarez-Borges
,
S.
Krevor
,
N.
Heinemann
,
R.
Atwood
, and
K.
Edlmann
, “
Pore-scale imaging of hydrogen displacement and trapping in porous media
,”
Int. J. Hydrogen Energy
48
,
3091
3106
(
2023
).
5.
S. E.
Buckley
and
M.
Leverett
, “
Mechanism of fluid displacement in sands
,”
Trans. AIME
146
,
107
116
(
1942
).
6.
D. T.
Wasan
and
A. D.
Nikolov
, “
Spreading of nanofluids on solids
,”
Nature
423
,
156
159
(
2003
).
7.
T. E.
Springer
,
T.
Zawodzinski
, and
S.
Gottesfeld
, “
Polymer electrolyte fuel cell model
,”
J. Electrochem. Soc.
138
,
2334
(
1991
).
8.
D.
Niblett
,
A.
Mularczyk
,
V.
Niasar
,
J.
Eller
, and
S.
Holmes
, “
Two-phase flow dynamics in a gas diffusion layer-gas channel-microporous layer system
,”
J. Power Sources
471
,
228427
(
2020
).
9.
V.
Joekar-Niasar
and
S.
Hassanizadeh
, “
Analysis of fundamentals of two-phase flow in porous media using dynamic pore-network models: A review
,”
Crit. Rev. Environ. Sci. Technol.
42
,
1895
1976
(
2012
).
10.
P.-G.
De Gennes
, “
Wetting: Statics and dynamics
,”
Rev. Mod. Phys.
57
,
827
(
1985
).
11.
D.
Bonn
,
J.
Eggers
,
J.
Indekeu
,
J.
Meunier
, and
E.
Rolley
, “
Wetting and spreading
,”
Rev. Mod. Phys.
81
,
739
(
2009
).
12.
S.
An
,
H.
Erfani
,
O. E.
Godinez-Brizuela
, and
V.
Niasar
, “
Transition from viscous fingering to capillary fingering: Application of GPU-based fully implicit dynamic pore network modeling
,”
Water Resour. Res.
56
,
e2020WR028149
, https://doi.org/10.1029/2020WR028149 (
2020
).
13.
E. J.
Soares
,
R. L.
Thompson
, and
D. C.
Niero
, “
Immiscible liquid–liquid pressure-driven flow in capillary tubes: Experimental results and numerical comparison
,”
Phys. Fluids
27
,
082105
(
2015
).
14.
T. T.
Al-Housseiny
,
P. A.
Tsai
, and
H. A.
Stone
, “
Control of interfacial instabilities using flow geometry
,”
Nat. Phys.
8
,
747
750
(
2012
).
15.
H. S.
Rabbani
,
D.
Or
,
Y.
Liu
,
C.-Y.
Lai
,
N. B.
Lu
,
S. S.
Datta
,
H. A.
Stone
, and
N.
Shokri
, “
Suppressing viscous fingering in structured porous media
,”
Proc. Natl. Acad. Sci. U.S.A.
115
,
4833
4838
(
2018a
).
16.
B.
Zhao
,
A. A.
Pahlavan
,
L.
Cueto-Felgueroso
, and
R.
Juanes
, “
Forced wetting transition and bubble pinch-off in a capillary tube
,”
Phys. Rev. Lett.
120
,
084501
(
2018
).
17.
P.
Giefer
,
A.
Kyrloglou
, and
U.
Fritsching
, “
Impact of wettability on interface deformation and droplet breakup in microcapillaries
,”
Phys. Fluids
35
,
042110
(
2023
).
18.
J.
Shokri
,
O. E.
Godinez-Brizuela
,
H.
Erfani
,
Y.
Chen
,
M.
Babaei
,
B.
Berkowitz
, and
V.
Niasar
, “
Impact of displacement direction relative to heterogeneity on averaged capillary pressure-saturation curves
,”
Water Resour. Res.
58
,
e2021WR030748
, https://doi.org/10.1029/2021WR030748 (
2022
).
19.
J. O.
Helland
and
S. M.
Skjaeveland
, “
Three-phase mixed-wet capillary pressure curves from a bundle of triangular tubes model
,”
J. Pet. Sci. Eng.
52
,
100
130
(
2006
).
20.
B.
Wei
,
J.
Hou
,
H.
Huang
,
M. C.
Sukop
,
Y.
Liu
, and
K.
Zhou
, “
Entry pressure for the rough capillary: Semi-analytical model, lattice Boltzmann simulation
,”
J. Hydrol.
562
,
17
29
(
2018
).
21.
B. K.
Primkulov
,
A. A.
Pahlavan
,
X.
Fu
,
B.
Zhao
,
C. W.
MacMinn
, and
R.
Juanes
, “
Wettability and Lenormand's diagram
,”
J. Fluid Mech.
923
,
A34
(
2021
).
22.
V.
Joekar-Niasar
,
M.
Prodanović
,
D.
Wildenschild
, and
S.
Hassanizadeh
, “
Network model investigation of interfacial area, capillary pressure and saturation relationships in granular porous media
,”
Water Resour. Res.
46
,
W06526
, https://doi.org/10.1029/2009WR008585 (
2010
).
23.
P.
Concus
and
R.
Finn
, “
On the behavior of a capillary surface in a wedge
,”
Proc. Natl. Acad. Sci. U.S.A.
63
,
292
299
(
1969
).
24.
P. S.
Laplace
,
Traité de mécanique céleste
(
Typ. Crapelet
,
1823
), Vol.
1
.
25.
R. P.
Mayer
and
R. A.
Stowe
, “
Mercury porosimetry—breakthrough pressure for penetration between packed spheres
,”
J. Colloid Sci.
20
,
893
911
(
1965
).
26.
H.
Princen
, “
Capillary phenomena in assemblies of parallel cylinders: I. Capillary rise between two cylinders
,”
J. Colloid Interface Sci.
30
,
69
75
(
1969a
).
27.
H.
Princen
, “
Capillary phenomena in assemblies of parallel cylinders: II. Capillary rise in systems with more than two cylinders
,”
J. Colloid Interface Sci.
30
,
359
371
(
1969b
).
28.
H.
Princen
, “
Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders
,”
J. Colloid Interface Sci.
34
,
171
184
(
1970
).
29.
G.
Mason
and
N. R.
Morrow
, “
Capillary behavior of a perfectly wetting liquid in irregular triangular tubes
,”
J. Colloid Interface Sci.
141
,
262
274
(
1991
).
30.
P.-E.
Øren
,
S.
Bakke
, and
O. J.
Arntzen
, “
Extending predictive capabilities to network models
,”
SPE J.
3
,
324
336
(
1998
).
31.
T. W.
Patzek
, “
Verification of a complete pore network simulator of drainage and imbibition
,”
SPE J.
6
,
144
156
(
2001
).
32.
V.
Joekar Niasar
,
S.
Hassanizadeh
,
L.
Pyrak-Nolte
, and
C.
Berentsen
, “
Simulating drainage and imbibition experiments in a high-porosity micromodel using an unstructured pore network model
,”
Water Resour. Res.
45
,
W02430
, https://doi.org/10.1029/2007WR006641 (
2009
).
33.
M.
Lago
and
M.
Araujo
, “
Threshold pressure in capillaries with polygonal cross section
,”
J. Colloid Interface Sci.
243
,
219
226
(
2001
).
34.
A. Q.
Raeini
,
M. J.
Blunt
, and
B.
Bijeljic
, “
Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method
,”
J. Comput. Phys.
231
,
5653
5668
(
2012
).
35.
M.
Shams
,
A. Q.
Raeini
,
M. J.
Blunt
, and
B.
Bijeljic
, “
A numerical model of two-phase flow at the micro-scale using the volume-of-fluid method
,”
J. Comput. Phys.
357
,
159
182
(
2018
).
36.
R.
Aziz
,
V.
Joekar-Niasar
, and
P.
Martinez-Ferrer
, “
Pore-scale insights into transport and mixing in steady-state two-phase flow in porous media
,”
Int. J. Multiphase Flow
109
,
51
62
(
2018
).
37.
O. E.
Godinez-Brizuela
and
V. J.
Niasar
, “
Simultaneous pressure and electro-osmosis driven flow in charged porous media: Pore-scale effects on mixing and dispersion
,”
J. Colloid Interface Sci.
561
,
162
172
(
2020
).
38.
L.
He
,
W.
He
,
S.
Wang
,
R.
Lou
,
T.
Ren
,
H.
Cui
,
Y.
Tao
, and
Y.
Yuan
, “
Transport dynamics of droplets encapsulated by an elastic interface in pore throats
,”
Phys. Fluids
36
,
092101
(
2024
).
39.
C. W.
Hirt
and
B. D.
Nichols
, “
Volume of fluid (VOF) method for the dynamics of free boundaries
,”
J. Comput. Phys.
39
,
201
225
(
1981
).
40.
S.
Das
,
H.
Patel
,
E.
Milacic
,
N.
Deen
, and
J.
Kuipers
, “
Droplet spreading and capillary imbibition in a porous medium: A coupled IB-VOF method based numerical study
,”
Phys. Fluids
30
,
012112
(
2018
).
41.
R.
Aziz
,
V.
Niasar
,
H.
Erfani
, and
P. J.
Martínez-Ferrer
, “
Impact of pore morphology on two-phase flow dynamics under wettability alteration
,”
Fuel
268
,
117315
(
2020
).
42.
S.
Suo
,
H.
Zhao
,
S.
Bagheri
,
P.
Yu
, and
Y.
Gan
, “
Mobility of trapped droplets within porous surfaces
,”
Chem. Eng. Sci.
264
,
118134
(
2022
).
43.
S.
Suo
and
Y.
Gan
, “
Tuning capillary flow in porous media with hierarchical structures
,”
Phys. Fluids
33
,
034107
(
2021
).
44.
L. M.
Giudici
,
A.
Qaseminejad Raeini
,
M. J.
Blunt
, and
B.
Bijeljic
, “
Representation of fully three-dimensional interfacial curvature in pore-network models
,”
Water Resour. Res.
59
,
e2022WR033983
, https://doi.org/10.1029/2022WR033983 (
2023
).
45.
H. S.
Rabbani
,
V.
Joekar-Niasar
, and
N.
Shokri
, “
Effects of intermediate wettability on entry capillary pressure in angular pores
,”
J. Colloid Interface Sci.
473
,
34
43
(
2016
).
46.
H. S.
Rabbani
and
S.
Pavuluri
, “
Semi-analytical model to predict dynamic capillary pressure–saturation relationship for flows in heterogeneous porous media
,”
Transp. Porous Media
151
,
665
(
2024
).
47.
H. S.
Rabbani
,
B.
Zhao
,
R.
Juanes
, and
N.
Shokri
, “
Pore geometry control of apparent wetting in porous media
,”
Sci. Rep.
8
,
15729
(
2018b
).
48.
J. U.
Brackbill
,
D. B.
Kothe
, and
C.
Zemach
, “
A continuum method for modeling surface tension
,”
J. Comput. Phys.
100
,
335
354
(
1992
).
49.
S.
An
,
H. W.
Yu
,
Z.
Wang
,
B.
Kapadia
, and
J.
Yao
, “
Unified mesoscopic modeling and GPU-accelerated computational method for image-based pore-scale porous media flows
,”
Int. J. Heat Mass Transfer
115
,
1192
1202
(
2017
).
50.
Y.
Niu
,
R.
Armstrong
, and
P.
Mostaghimi
, See http://www.digitalrocksportal.org/projects/324 for “
Unpaired super-resolution on micro-CT sandstone by using cycle-consistent generative adversarial network
” (
2020
).
51.
R.
Chandler
,
J.
Koplik
,
K.
Lerman
, and
J. F.
Willemsen
, “
Capillary displacement and percolation in porous media
,”
J. Fluid Mech.
119
,
249
267
(
1982
).
52.
M.
Starnoni
and
D.
Pokrajac
, “
Numerical study of the effects of contact angle and viscosity ratio on the dynamics of snap-off through porous media
,”
Adv. Water Resour.
111
,
70
85
(
2018
).
53.
H.
Jasak
,
A.
Jemcov
,
Z.
Tukovic
et al, “
Openfoam: A C++ library for complex physics simulations
,” in
International Workshop on Coupled Methods in Numerical Dynamics
(IUC Dubrovnik, Croatia,
2007
), Vol. 1000, pp. 1–20.
54.
R. I.
Issa
, “
Solution of the implicitly discretised fluid flow equations by operator-splitting
,”
J. Comput. Phys.
62
,
40
65
(
1986
).
55.
S.
Cox
,
A.
Davarpanah
, and
W.
Rossen
, “
Interface shapes in microfluidic porous media: Conditions allowing steady, simultaneous two-phase flow
,”
Transp. Porous Media
147
,
197
216
(
2023
).
56.
S.
Berg
,
H.
Ott
,
S. A.
Klapp
,
A.
Schwing
,
R.
Neiteler
,
N.
Brussee
,
A.
Makurat
,
L.
Leu
,
F.
Enzmann
,
J.-O.
Schwarz
et al, “
Real-time 3D imaging of Haines jumps in porous media flow
,”
Proc. Natl. Acad. Sci. U.S.A.
110
,
3755
3759
(
2013
).
57.
Z.
Sun
and
J. C.
Santamarina
, “
Haines jumps: Pore scale mechanisms
,”
Phys. Rev. E
100
,
023115
(
2019
).
58.
K. R.
Tekseth
,
F.
Mirzaei
,
B.
Lukic
,
B.
Chattopadhyay
, and
D. W.
Breiby
, “
Multiscale drainage dynamics with Haines jumps monitored by stroboscopic 4D x-ray microscopy
,”
Proc. Natl. Acad. Sci. U.S.A.
121
,
e2305890120
(
2024
).
59.
H.
Zhang
,
S.
An
,
P. R.
Brito-Parada
,
S. J.
Neethling
, and
Y.
Wang
, “
Investigation into three-dimensional dry foam modelling using the boundary integral method
,”
J. Comput. Phys.
499
,
112724
(
2024
).
60.
J.
Chen
,
G.
Hirasaki
, and
M.
Flaum
, “
NMR wettability indices: Effect of OBM on wettability and NMR responses
,”
J. Pet. Sci. Eng.
52
,
161
171
(
2006
).
61.
O.
Owolabi
and
R.
Watson
, “
Effects of rock-pore characteristics on oil recovery at breakthrough and ultimate oil recovery in water-wet sandstones
,” in
SPE Eastern Regional Meeting, Pittsburgh, Pennsylvania
(OnePetro,
1993
), Paper No. SPE-26935-MS.
62.
M. M.
Dias
and
A. C.
Payatakes
, “
Network models for two-phase flow in porous media Part 2. Motion of oil ganglia
,”
J. Fluid Mech.
164
,
337
358
(
1986
).
63.
D. G.
Avraam
and
A. C.
Payatakes
, “
Flow regimes and relative permeabilities during steady-state two-phase flow in porous media
,”
J. Fluid Mech.
293
,
207
236
(
1995
).
64.
S. S.
Datta
,
T.
Ramakrishnan
, and
D. A.
Weitz
, “
Mobilization of a trapped non-wetting fluid from a three-dimensional porous medium
,”
Phys. Fluids
26
,
022002
(
2014
).
65.
C.
Spurin
,
T.
Bultreys
,
B.
Bijeljic
,
M. J.
Blunt
, and
S.
Krevor
, “
Mechanisms controlling fluid breakup and reconnection during two-phase flow in porous media
,”
Phys. Rev. E
100
,
043115
(
2019a
).
66.
C.
Spurin
,
T.
Bultreys
,
B.
Bijeljic
,
M. J.
Blunt
, and
S.
Krevor
, “
Intermittent fluid connectivity during two-phase flow in a heterogeneous carbonate rock
,”
Phys. Rev. E
100
,
043103
(
2019b
).
67.
A.
Scanziani
,
A.
Alhosani
,
Q.
Lin
,
C.
Spurin
,
G.
Garfi
,
M. J.
Blunt
, and
B.
Bijeljic
, “
In situ characterization of three-phase flow in mixed-wet porous media using synchrotron imaging
,”
Water Resour. Res.
56
,
e2020WR027873
, https://doi.org/10.1029/2020WR027873 (
2020
).
68.
A.
Alhosani
,
A. M.
Selem
,
Q.
Lin
,
B.
Bijeljic
, and
M. J.
Blunt
, “
Disconnected gas transport in steady-state three-phase flow
,”
Water Resour. Res.
57
,
e2021WR031147
, https://doi.org/10.1029/2021WR031147 (
2021
).
You do not currently have access to this content.