The Boussinesq equation describes the model for horizontal water flow in unconfined aquifers without precipitation, a topic that has been extensively studied in the literature. However, the parameters, as well as the initial and boundary conditions, are often assumed to be exact. In reality, these conditions may be incomplete or uncertain due to limited knowledge, insufficient information, or errors introduced by humans or machines. The fuzzy set theory has recently been successfully employed to model such uncertainties. This article investigates the analytical solution of the one-dimensional Boussinesq equation in a fuzzy environment. The objective of this research is to investigate the recharge and discharge of a semi-infinite unconfined aquifer adjacent to a lake. For the present investigation, uncertainties in terms of fuzzy are considered only for the involved initial and boundary conditions of the problem, whereas other parameters are considered as crisp or exact. The analysis employed the double parametric form of a fuzzy number alongside Laplace transform techniques. The obtained solutions were then compared with existing results in specific cases to validate their accuracy.

1.
A. M.
Bakry
,
A. A.
Garamoon
,
A. M.
Nossair
, and
S.
Hassaballa
, “
Electrical and optical characterization of a cage discharge plasma device for surface processing
,”
Phys. Fluids
35
(
10
),
105105
(
2023
).
2.
X.
Liu
and
J.
Zeng
, “
Matter-wave gap solitons and vortices of dense Bose–Einstein condensates in Moiré optical lattices
,”
Chaos Solitons Fractals
174
,
113869
(
2023
).
3.
J. D.
Carter
,
M.
Francius
,
C.
Kharif
,
H.
Kalisch
, and
M.
Abid
, “
The superharmonic instability and wave breaking in Whitham equations
,”
Phys. Fluids
35
(
10
),
103609
(
2023
).
4.
D.
Mohapatra
,
S.
Chakraverty
, and
M.
Alshammari
, “
Time fractional heat equation of n + 1-dimension in type-1 and type-2 fuzzy environment
,”
Int. J. Fuzzy Syst.
26
,
1
(
2024
).
5.
A. K.
Sahoo
and
S.
Chakraverty
, “
A neural network approach for the solution of Van der Pol-Mathieu-Duffing oscillator model
,”
Evol. Intell.
17
,
1425
(
2024
).
6.
K.
Zhao
and
Z.
Wen
, “
Existence of single-peak solitary waves and double-peaks solitary wave of Gardner equation with Kuramoto–Sivashinsky perturbation
,”
Qual. Theory Dyn. Syst.
22
(
3
),
112
(
2023
).
7.
M.
Sahoo
and
S.
Chakraverty
, “
Riccati–Bernoulli sub-ode method-based exact solution of new coupled Konno–Oono equation
,”
Int J. Mod Phys B
38
,
2440028
(
2024
).
8.
J.
Boussinesq
, “
Theoretical research on the flow of water tables infiltrated into the ground and on the flow of springs
,”
J. Pure Appl. Math.
10
,
5
78
(
1904
).
9.
W. W.-G.
Yeh
, “
Nonsteady flow to surface reservoir
,”
J. Hydraul. Div.
96
(
3
),
609
618
(
1970
).
10.
A. D.
Koussis
, “
Transient reservoir-aquifer interaction
,”
J. Hydraul. Div.
105
(
6
),
637
645
(
1979
).
11.
H.
Zhang
,
J.
Lu
, and
Q.
Hu
, “
Exponential growth of solution of a strongly nonlinear generalized Boussinesq equation
,”
Comput. Math. Appl.
68
(
12
),
1787
1793
(
2014
).
12.
S. P.
Neuman
and
P. A.
Witherspoon
, “
Analysis of nonsteady flow with a free surface using the finite element method
,”
Water Resour. Res.
7
(
3
),
611
623
, https://doi.org/10.1029/WR007i003p00611 (
1971
).
13.
C.
Tzimopoulos
and
G.
Terzidis
, “
Écoulement non permanent dans un sol drainé par des fossés parallèles
,”
J. Hydrol.
27
(
1–2
),
73
93
(
1975
).
14.
C.
Tzimopoulos
, “
Solution de l'équation de Boussinesq par une méthode des éléments finis
,”
J. Hydrol.
30
(
1–2
),
1
18
(
1976
).
15.
E.
Colmenares
and
M.
Neilan
, “
Dual-mixed finite element methods for the stationary Boussinesq problem
,”
Comput. Math. Appl.
72
(
7
),
1828
1850
(
2016
).
16.
L. A.
Zadeh
, “
Fuzzy sets
,”
Inf. Control
8
(
3
),
338
353
(
1965
).
17.
S. S. L.
Chang
and
L. A.
Zadeh
, “
On fuzzy mapping and control
,”
IEEE Trans. Syst. Man Cybern.
SMC-2
(
1
),
30
34
(
1972
).
18.
D.
Dubois
and
H.
Prade
, “
Towards fuzzy differential calculus part 3: Differentiation
,”
Fuzzy Sets Syst.
8
,
225
233
(
1982
).
19.
M. L.
Puri
and
D. A.
Ralescu
, “
Differentials of fuzzy functions
,”
J. Math. Anal. Appl.
91
(
2
),
552
558
(
1983
).
20.
M.
Hukuhara
, “
Integration of measurable functions whose values are compact convex sets
,”
Funkcialaj Ekvacioj
10
(
3
),
205
223
(
1967
).
21.
O.
Kaleva
, “
Fuzzy differential equations
,”
Fuzzy Sets Syst.
24
(
3
),
301
317
(
1987
).
22.
S.
Seikkala
, “
On the fuzzy initial value problem
,”
Fuzzy Sets Syst.
24
(
3
),
319
330
(
1987
).
23.
B.
Bede
and
S. G.
Gal
, “
Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations
,”
Fuzzy Sets Syst.
151
(
3
),
581
599
(
2005
).
24.
L.
Stefanini
and
B.
Bede
, “
Generalized Hukuhara differentiability of interval-valued functions and interval differential equations
,”
Nonlinear Anal. Theory Methods Appl.
71
(
3–4
),
1311
1328
(
2009
).
25.
T.
Allahviranloo
,
Z.
Gouyandeh
,
A.
Armand
, and
A.
Hasanoglu
, “
On fuzzy solutions for heat equation based on generalized Hukuhara differentiability
,”
Fuzzy Sets Syst.
265
,
1
23
(
2015
).
26.
C.
Tzimopoulos
,
K.
Papadopoulos
, and
C.
Evangelides
, “
Fuzzy analytical solution to horizontal infiltration
,”
J. Comput. Methods Sci. Eng.
19
,
913
927
(
2019
).
27.
C.
Tzimopoulos
,
K.
Papadopoulos
,
C.
Evangelides
, and
B.
Papadopoulos
, “
Fuzzy solution to the unconfined aquifer problem
,”
Water (Basel)
11
(
1
),
54
(
2018
).
28.
D.
Behera
and
S.
Chakraverty
, “
New approach to solve fully fuzzy system of linear equations using single and double parametric form of fuzzy numbers
,”
Sadhana
40
(
1
),
35
49
(
2015
).
29.
S.
Chakraverty
,
S.
Tapaswini
, and
D.
Behera
,
Fuzzy Differential Equations and Applications for Engineers and Scientists
, 1st ed. (
CRC Press
,
Boca Raton, FL
,
2016
).
30.
S.
Chakraverty
,
S.
Tapaswini
, and
D.
Behera
,
Fuzzy Arbitrary Order System: Fuzzy Fractional Differential Equations and Applications
(
John Wiley & Sons
,
2016
).
31.
A. F.
Jameel
,
S. G.
Amen
,
A.
Saaban
,
N. H.
Man
, and
F. M.
Alipiah
, “
Homotopy perturbation method for solving linear fuzzy delay differential equations using double parametric approach
,”
Math. Stat.
8
(
5
),
551
558
(
2020
).
32.
U.
Biswal
,
S.
Chakraverty
,
B. K.
Ojha
, and
A. K.
Hussein
, “
Study of Jeffery-Hamel flow problem for nanofluid with fuzzy volume fraction using double parametric based Adomian decomposition method
,”
Int. Commun. Heat Mass Transfer
126
,
105435
(
2021
).
33.
M.
Almutairi
,
H.
Zureigat
,
A.
Izani Ismail
, and
A.
Fareed Jameel
, “
Fuzzy numerical solution via finite difference scheme of wave equation in double parametrical fuzzy number form
,”
Mathematics
9
(
6
),
667
(
2021
).
34.
M.
Sahoo
and
S.
Chakraverty
, “
Sawi transform based homotopy perturbation method for solving shallow water wave equations in fuzzy environment
,”
Mathematics
10
(
16
),
2900
(
2022
).
35.
M.
Sahoo
and
S.
Chakraverty
, “
Solitary wave solution for time-fractional SMCH equation in fuzzy environment
,” in
Computation and Modeling for Fractional Order Systems
(
Elsevier
,
2024
), pp.
227
239
.
36.
R.
Vana
and
K.
Perumandla
, “
Uncertainties in regularized long-wave equation and its modified form: A triangular fuzzy-based approach
,”
Phys. Fluids
36
(
4
),
046610
(
2024
).
37.
R.
Vana
and
P.
Karunakar
, “
Fuzzy uncertainty modeling of generalized Hirota–Satsuma coupled Korteweg–de Vries equation
,”
Phys. Fluids
36
(
9
),
096609
(
2024
).
38.
S.
Chakraverty
,
D. M.
Sahoo
, and
N. R.
Mahato
,
Concepts of Soft Computing
(
Springer
,
Singapore
,
2019
).
39.
N. A.
de Ridder
and
G.
Zijlstra
, “
Seepage and groundwater flow
,” in
Drainage Principles Applications
(
International Institute for Land Reclamation and Improvement
,
1994
), Vol.
16
, pp.
305
340
.
You do not currently have access to this content.