Pluronics, alias poloxamers, are synthetic amphiphilic copolymers owning a triblock structure with a central hydrophobic poly(propylene oxide) (PPO) segment linked to two lateral hydrophilic poly(ethylene oxide) (PEO) chains. Commercially, Pluronics exist in numerous types according to the length of PPO and PEO chains, exhibiting different behavior and phase diagrams in solution. Concentrated aqueous solutions of Pluronics form thermoreversible gel-like systems. Properties, such as versatility, biocompatibility, nontoxicity, thermosensitivity and self-assembling behavior, make them extremely attractive for numerous applications. This review paper provides an overview on Pluronics, with a focus on their properties and phase behaviors, and on the effect of the presence of salts and additives. Different strategies to endow Pluronics with improved and extra properties, such as their chemical modification and mixed micelles, are briefly illustrated. Furthermore, a synopsis of useful experimental methodologies for understanding the flow properties of Pluronic-based systems is presented, providing a practical guide to their experimental characterization. Eventually, significant advances of Pluronic-based materials are briefly reviewed to elucidate their role in diverse applications, ranging from drug delivery and tissue engineering to bioprinting, cell cultures, personal care industry, conductive hydrogels, and electrocatalytic science. The current article is a critical review of Pluronic block copolymers, not intended as just inert materials but also as systems with functional properties able to revolutionize the paradigm of many technological fields.

1.
J. V.
Gruber
, “
Synthetic polymers in cosmetics
,” in Principles of Polymer Science and Technology in Cosmetics and Personal Care, edited by E. D. Goddard and J. V. Gruber JV (Marcel Dekker Inc., New York,
1999
).
2.
P.
Zarrintaj
et al, “
Poloxamer-based stimuli-responsive biomaterials
,”
Mater. Today
5
(
7
),
15516
15523
(
2018
).
3.
P.
Zarrintaj
et al, “
Poloxamer: A versatile tri-block copolymer for biomedical applications
,”
Acta Biomater.
110
,
37
67
(
2020
).
4.
N.
Hadjichristidis
,
M.
Pitsikalis
, and
H.
Iatrou
, “
Synthesis of block copolymers
,” in
Block Copolymers I
(Springer,
2005
), pp.
1
124
.
5.
H.
Feng
et al, “
Block copolymers: Synthesis, self-assembly, and applications
,”
Polymers
9
(
10
),
494
(
2017
).
6.
A. P.
Constantinou
and
T. K.
Georgiou
, “
Pre‐clinical and clinical applications of thermoreversible hydrogels in biomedical engineering: A review
,”
Polym. Int.
70
(
10
),
1433
1448
(
2021
).
7.
M.
Almeida
et al, “
Poloxamers, poloxamines and polymeric micelles: Definition, structure and therapeutic applications in cancer
,”
J. Polym. Res.
25
,
31
(
2018
).
8.
K. C.
de Castro
et al, “
Pluronic® triblock copolymer-based nanoformulations for cancer therapy: A 10-year overview
,”
J. Controlled Release
353
,
802
822
(
2023
).
9.
A. V.
Kabanov
,
E. V.
Batrakova
, and
V. Y.
Alakhov
, “
Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery
,”
J. Controlled Release
82
(
2–3
),
189
212
(
2002
).
10.
I. R.
Schmolka
, “
Artificial skin I. Preparation and properties of pluronic F‐127 gels for treatment of burns
,”
J. Biomed. Mater. Res.
6
(
6
),
571
582
(
1972
).
11.
I.
Schmolka
, “
Polyoxyethylene-polyoxypropylene aqueous gels
,” U.S. Patent No. 3,740,421 (19 June
1973
).
12.
J.
Herzberger
et al, “
Polymerization of ethylene oxide, propylene oxide, and other alkylene oxides: Synthesis, novel polymer architectures, and bioconjugation
,”
Chem. Rev.
116
(
4
),
2170
2243
(
2016
).
13.
I. R.
Schmolka
, “
A review of block polymer surfactants
,”
J. Am. Oil Chem. Soc.
54
(
3
),
110
116
(
1977
).
14.
D.
Bedrov
,
C.
Ayyagari
, and
G. D.
Smith
, “
Multiscale modeling of poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) triblock copolymer micelles in aqueous solution
,”
J. Chem. Theory Comput.
2
(
3
),
598
606
(
2006
).
15.
F.
Artzner
et al, “
Interactions between poloxamers in aqueous solutions: Micellization and gelation studied by differential scanning calorimetry, small angle X-ray scattering, and rheology
,”
Langmuir
23
(
9
),
5085
5092
(
2007
).
16.
G.
Wanka
,
H.
Hoffmann
, and
W.
Ulbricht
, “
Phase diagrams and aggregation behavior of poly(oxyethylene)-poly (oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions
,”
Macromolecules
27
(
15
),
4145
4159
(
1994
).
17.
S. C.
Sharma
,
R.
Atkin
, and
G. G.
Warr
, “
The effect of ionic liquid hydrophobicity and solvent miscibility on Pluronic amphiphile self-assembly
,”
J. Phys. Chem. B
117
(
46
),
14568
14575
(
2013
).
18.
N. A.
Di Spirito
et al, “
Phase transitions of aqueous solutions of Pluronic F68 in the presence of diclofenac sodium
,”
Int. J. Pharm.
644
,
123353
(
2023
). Further permissions related to the material excerpted should be directed to the Elsevier.
19.
A. M.
Bodratti
and
P.
Alexandridis
, “
Formulation of poloxamers for drug delivery
,”
J. Funct. Biomater.
9
(
1
),
11
(
2018
).
20.
G.
Dumortier
et al, “
A review of poloxamer 407 pharmaceutical and pharmacological characteristics
,”
Pharm. Res.
23
,
2709
2728
(
2006
).
21.
G.
Dumortier
et al, “
Rheological study of a thermoreversible morphine gel
,”
Drug Dev. Ind. Pharm.
17
(
9
),
1255
1265
(
1991
).
22.
J. N.
Israelachvili
,
D. J.
Mitchell
, and
B. W.
Ninham
, “
Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers
,”
J. Chem. Soc., Faraday Trans. 2
72
,
1525
1568
(
1976
).
23.
K. A.
Asghar
et al, “
Predicting sizes of hexagonal and gyroid metal nanostructures from liquid crystal templating
,”
ACS Nano
9
(
11
),
10970
10978
(
2015
).
24.
S.
Förster
et al, “
Lyotropic phase morphologies of amphiphilic block copolymers
,”
Macromolecules
34
(
13
),
4610
4623
(
2001
).
25.
G. S.
Attard
et al, “
Liquid‐crystal templates for nanostructured metals
,”
Angew. Chem., Int. Ed.
36
(
12
),
1315
1317
(
1997
).
26.
G. S.
Attard
et al, “
Mesoporous platinum films from lyotropic liquid crystalline phases
,”
Science
278
(
5339
),
838
840
(
1997
).
27.
K.
Patel
et al, “
Salt‐induced micellization of Pluronic F88 in water
,”
J. Dispersion Sci. Technol.
29
(
5
),
748
755
(
2008
).
28.
K.
Pandya
et al, “
Micellar and solubilizing behaviour of Pluronic L-64 in water
,”
Colloids Surf., A
70
(
3
),
219
227
(
1993
).
29.
N. J.
Jain
,
A.
George
, and
P.
Bahadur
, “
Effect of salt on the micellization of pluronic P65 in aqueous solution
,”
Colloids Surf., A
157
(
1–3
),
275
283
(
1999
).
30.
N. A.
Di Spirito
et al, “
Pluronic F68 micelles as carriers for an anti-inflammatory drug: A rheological and scattering investigation
,”
Langmuir
40
(
2
),
1544
1554
(
2024
). Further permissions related to the material excerpted should be directed to the ACS.
31.
R. K.
Thapa
et al, “
Effect of curcumin and cosolvents on the micellization of Pluronic F127 in aqueous solution
,”
Colloids Surf., B
195
,
111250
(
2020
).
32.
P.
Linse
, “
Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution
,”
Macromolecules
26
(
17
),
4437
4449
(
1993
).
33.
E.
Ruel-Gariepy
and
J.-C.
Leroux
, “
In situ-forming hydrogels—review of temperature-sensitive systems
,”
Eur. J. Pharm. Biopharm.
58
(
2
),
409
426
(
2004
).
34.
B.
Jeong
,
S. W.
Kim
, and
Y. H.
Bae
, “
Thermosensitive sol–gel reversible hydrogels
,”
Adv. Drug Delivery Rev.
64
,
154
162
(
2012
).
35.
K.
Suman
,
S.
Sourav
, and
Y. M.
Joshi
, “
Rheological signatures of gel–glass transition and a revised phase diagram of an aqueous triblock copolymer solution of Pluronic F127
,”
Phys. Fluids
33
(
7
),
073610
(
2021
).
36.
R.
Pasquino
et al, “
An experimental rheological phase diagram of a tri-block co-polymer in water validated against dissipative particle dynamics simulations
,”
Soft Matter
15
(
6
),
1396
1404
(
2019
).
37.
A. V.
Kabanov
et al, “
Pluronic® block copolymers: Novel functional molecules for gene therapy
,”
Adv. Drug Delivery Rev.
54
(
2
),
223
233
(
2002
).
38.
A.
Oshiro
et al, “
Pluronics F-127/L-81 binary hydrogels as drug-delivery systems: Influence of physicochemical aspects on release kinetics and cytotoxicity
,”
Langmuir
30
(
45
),
13689
13698
(
2014
).
39.
A.
Rahdar
,
S.
Kazemi
, and
F.
Askari
, “
Pluronic as nano-carier for drug delivery systems
,”
Nanomed. Res. J.
3
(
4
),
174
179
(
2018
).
40.
E.
Gioffredi
et al, “
Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications
,”
Procedia CIRP
49
,
125
132
(
2016
).
41.
J. Y.
Chung
et al, “
Comparison of articular cartilage repair with different hydrogel-human umbilical cord blood-derived mesenchymal stem cell composites in a rat model
,”
Stem Cell Res. Ther.
5
,
39
(
2014
).
42.
F.
Cellesi
, “
Thermoresponsive hydrogels for cellular delivery
,”
Ther. Delivery
3
(
12
),
1395
1407
(
2012
).
43.
Y.
Zhang
et al, “
A novel paclitaxel-loaded poly (ε-caprolactone)/Poloxamer 188 blend nanoparticle overcoming multidrug resistance for cancer treatment
,”
Acta Biomater.
6
(
6
),
2045
2052
(
2010
).
44.
Q.
Guo
et al, “
Preparation and characterization of poly (pluronic-co-L-lactide) nanofibers for tissue engineering
,”
Int. J. Biol. Macromol.
58
,
79
86
(
2013
).
45.
J.
Chen
et al, “
Mechanical, rheological and release behaviors of a poloxamer 407/poloxamer 188/carbopol 940 thermosensitive composite hydrogel
,”
Molecules
18
(
10
),
12415
12425
(
2013
).
46.
J.
Yu
et al, “
Polymeric drug delivery system based on pluronics for cancer treatment
,”
Molecules
26
(
12
),
3610
(
2021
).
47.
E. V.
Batrakova
and
A. V.
Kabanov
, “
Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers
,”
J. Controlled Release
130
(
2
),
98
106
(
2008
). Further permissions related to the material excerpted should be directed to the Elsevier.
48.
N.
Rapoport
, “
Stabilization and activation of Pluronic micelles for tumor-targeted drug delivery
,”
Colloids Surf., B
16
(
1–4
),
93
111
(
1999
).
49.
M. S. H.
Akash
and
K.
Rehman
, “
Recent progress in biomedical applications of Pluronic (PF127): Pharmaceutical perspectives
,”
J. Controlled Release
209
,
120
138
(
2015
).
50.
M.
Müller
et al, “
Nanostructured Pluronic hydrogels as bioinks for 3D bioprinting
,”
Biofabrication
7
(
3
),
035006
(
2015
).
51.
R. N.
Shamma
et al, “
Triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: A focus on Pluronic F127
,”
Tissue Eng., Part B
28
(
2
),
451
463
(
2022
).
52.
J.-P.
Habas
et al, “
Nanostructure in block copolymer solutions: Rheology and small-angle neutron scattering
,”
Phys. Rev. E
70
(
6
),
061802
(
2004
).
53.
M.
Khimani
et al, “
pH induced tuning of size, charge and viscoelastic behavior of aqueous micellar solution of Pluronic® P104–anthranilic acid mixtures: A scattering, rheology and NMR study
,”
Colloids Surf., A
470
,
202
210
(
2015
).
54.
G.
Russo
et al, “
Tuning Pluronic F127 phase transitions by adding physiological amounts of salts: A rheology, SAXS, and NMR investigation
,”
Eur. Polym. J.
204
,
112714
(
2024
).
55.
M. J.
Newman
,
M.
Balusubramanian
, and
C. W.
Todd
, “
Development of adjuvant-active nonionic block copolymers
,”
Adv. Drug Delivery Rev.
32
(
3
),
199
223
(
1998
).
56.
A.
Pitto-Barry
and
N. P. E.
Barry
, “
Pluronic® block-copolymers in medicine: From chemical and biological versatility to rationalisation and clinical advances
,”
Polym. Chem.
5
(
10
),
3291
3297
(
2014
).
57.
M.
Khimani
et al, “
Self-assembly of stimuli-responsive block copolymers in aqueous solutions: An overview
,”
Polym. Bull.
77
,
5783
5810
(
2020
).
58.
P.
Alexandridis
and
T.
Alan Hatton
, “
Poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling
,”
Colloids Surf., A
96
(
1–2
),
1
46
(
1995
).
59.
D. Y.
Alakhova
and
A. V.
Kabanov
, “
Pluronics and MDR reversal: An update
,”
Mol. Pharm.
11
(
8
),
2566
2578
(
2014
).
60.
D.
Patel
et al, “
SDS triggered transformation of highly hydrophobic Pluronics® nanoaggregate into polymer-rich and surfactant-rich mixed micelles
,”
J. Mol. Liq.
345
,
117812
(
2022
).
61.
P.
Alexandridis
and
B.
Lindman
,
Amphiphilic Block Copolymers: Self-Assembly and Applications
(
Elsevier
,
2000
).
62.
S.
Fusco
,
A.
Borzacchiello
, and
P. A.
Netti
, “
Perspectives on: PEO-PPO-PEO triblock copolymers and their biomedical applications
,”
J. Bioact. Compat. Polym.
21
(
2
),
149
164
(
2006
).
63.
N. A.
Di Spirito
et al, “
Drug release from Pluronic F68 hydrogels
,”
Phys. Fluids
36
(
3
),
031709
(
2024
).
64.
J. C.
Gilbert
et al, “
Drug release from Pluronic F-127 gels
,”
Int. J. Pharm.
32
(
2–3
),
223
228
(
1986
).
65.
A.
Marin
et al, “
Drug delivery in pluronic micelles: Effect of high-frequency ultrasound on drug release from micelles and intracellular uptake
,”
J. Controlled Release
84
(
1–2
),
39
47
(
2002
).
66.
T.
Moore
et al, “
Experimental investigation and mathematical modeling of Pluronic® F127 gel dissolution: Drug release in stirred systems
,”
J. Controlled Release
67
(
2–3
),
191
202
(
2000
).
67.
C. Y.
Gong
et al, “
In vitro drug release behavior from a novel thermosensitive composite hydrogel based on Pluronic f127 and poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) copolymer
,”
BMC Biotechnol.
9
,
8
(
2009
).
68.
P.-C.
Chen-Chow
and
S. G.
Frank
, “
In vitro release of lidocaine from pluronic F-127 gels
,”
Int. J. Pharm.
8
(
2
),
89
99
(
1981
).
69.
Y. L.
Wu
et al, “
Effect of salt on the phase behaviour of F68 triblock PEO/PPO/PEO copolymer
,”
J. Phys.
18
(
19
),
4461
(
2006
). Further permissions related to the material excerpted should be directed to the IOP Publishing.
70.
P.
Alexandridis
,
D.
Zhou
, and
A.
Khan
, “
Lyotropic liquid crystallinity in amphiphilic block copolymers: Temperature effects on phase behavior and structure for poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) copolymers of different composition
,”
Langmuir
12
(
11
),
2690
2700
(
1996
). Further permissions related to the material excerpted should be directed to the ACS.
71.
D. C.
Pozzo
and
L. M.
Walker
, “
Shear orientation of nanoparticle arrays templated in a thermoreversible block copolymer micellar crystal
,”
Macromolecules
40
(
16
),
5801
5811
(
2007
).
72.
P.
Singla
et al, “
Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review
,”
Adv. Colloid Interface Sci.
299
,
102563
(
2022
).
73.
K.
Al Khateb
et al, “
In situ gelling systems based on Pluronic F127/Pluronic F68 formulations for ocular drug delivery
,”
Int. J. Pharm.
502
(
1–2
),
70
79
(
2016
).
74.
H.-R.
Lin
,
K. C.
Sung
, and
W.-J.
Vong
, “
In situ gelling of alginate/Pluronic solutions for ophthalmic delivery of pilocarpine
,”
Biomacromolecules
5
(
6
),
2358
2365
(
2004
).
75.
W.-D.
Ma
et al, “
Pluronic F127-g-poly(acrylic acid) copolymers as in situ gelling vehicle for ophthalmic drug delivery system
,”
Int. J. Pharm.
350
(
1–2
),
247
256
(
2008
).
76.
A.
Garg
et al, “
In-situ gel: A smart carrier for drug delivery
,”
Int. J. Pharm.
652
,
123819
(
2024
).
77.
S.
Costanzo
et al, “
Rheology and morphology of Pluronic F68 in water
,”
Phys. Fluids
33
(
4
),
043113
(
2021
). Further permissions related to the material excerpted should be directed to the AIP Publishing.
78.
N. U.
Khaliq
et al, “
Pluronic F-68 and F-127 based nanomedicines for advancing combination cancer therapy
,”
Pharmaceutics
15
(
8
),
2102
(
2023
).
79.
P.
Dehghankelishadi
and
F. A.
Dorkoosh
, “
Pluronic based nano-delivery systems; Prospective warrior in war against cancer
,”
Nanomed. Res. J.
1
(
1
),
1
7
(
2016
).
80.
R. M.
Nalbandian
et al, “
Pluronic F‐127 gel preparation as an artificial skin in the treatment of third‐degree burns in pigs
,”
J. Biomed. Mater. Res.
21
(
9
),
1135
1148
(
1987
).
81.
C. F.
de Freitas
et al, “
Recent advances of Pluronic-based copolymers functionalization in biomedical applications
,”
Biomater. Adv.
151
,
213484
(
2023
).
82.
D. C.
Santos
et al, “
Green synthesis of silver nanostructures with amino acid-modified Pluronic F127 for antibacterial applications
,”
Appl. Surf. Sci.
505
,
144449
(
2020
).
83.
J.
Niu
et al, “
Dual-targeting nanocarrier based on glucose and folic acid functionalized pluronic P105 polymeric micelles for enhanced brain distribution
,”
J. Drug Delivery Sci. Technol.
57
,
101343
(
2020
).
84.
C.
Huang
et al, “
Folate receptor-mediated renal-targeting nanoplatform for the specific delivery of triptolide to treat renal ischemia/reperfusion injury
,”
ACS Biomater. Sci. Eng.
5
(
6
),
2877
2886
(
2019
).
85.
Y.
Liang
et al, “
Preparation of pH sensitive Pluronic-docetaxel conjugate micelles to balance the stability and controlled release issues
,”
Materials
8
(
2
),
379
391
(
2015
).
86.
P.
Li
et al, “
Dual responsive oligo(lysine)-modified Pluronic F127 hydrogels for drug release of 5-fluorouracil
,”
RSC Adv.
10
(
41
),
24507
24514
(
2020
).
87.
H.
Quan
et al, “
The thermoviscosifying behavior of water-soluble polymer based on graft polymerization of Pluronic F127 with acrylamide and 2-acrylamido-2-methylpropane sulfonic acid sodium salt
,”
Polymers
11
(
10
),
1702
(
2019
).
88.
S. Y.
Park
et al, “
Temperature/pH‐sensitive hydrogels prepared from Pluronic copolymers end‐capped with carboxylic acid groups via an oligolactide spacer
,”
Macromol. Rapid Commun.
28
(
10
),
1172
1176
(
2007
).
89.
B.
Foster
,
T.
Cosgrove
, and
Y.
Espidel
, “
PFGSE-NMR study of pH-triggered behavior in Pluronic−ibuprofen solutions
,”
Langmuir
25
(
12
),
6767
6771
(
2009
).
90.
M.
Valero
et al, “
Solubilisation of salicylate in F127 micelles: Effect of pH and temperature on morphology and interactions with cyclodextrin
,”
J. Mol. Liq.
322
,
114892
(
2021
).
91.
G.
Barım
et al, “
Highly conducting lyotropic liquid crystalline mesophases of pluronics (P65, P85, P103, and P123) and hydrated lithium salts (LiCl and LiNO3)
,”
Langmuir
30
(
23
),
6938
6945
(
2014
). Further permissions related to the material excerpted should be directed to the ACS.
92.
C. R.
López-Barrón
et al, “
Self-assembly of Pluronic F127 diacrylate in ethylammonium nitrate: Structure, rheology, and ionic conductivity before and after photo-cross-linking
,”
Macromolecules
49
(
14
),
5179
5189
(
2016
).
93.
N.
Gjerde
et al, “
Influence of poly(ε-caprolactone) end-groups on the temperature-induced macroscopic gelation of Pluronic in aqueous media
,”
Eur. Polym. J.
112
,
493
503
(
2019
).
94.
H.
Zhao
et al, “
pH-sensitive DOX-loaded PAA-PF127-PAA micelles combined with cryotherapy for treating Walker 256 carcinosarcoma in a rat model
,”
J. Nanosci. Nanotechnol.
18
(
12
),
8070
8077
(
2018
).
95.
W. X.
Ren
et al, “
Recent development of biotin conjugation in biological imaging, sensing, and target delivery
,”
Chem. Commun.
51
(
52
),
10403
10418
(
2015
).
96.
P.
Ghosh
et al, “
Gold nanoparticles in delivery applications
,”
Adv. Drug Delivery Rev.
60
(
11
),
1307
1315
(
2008
).
97.
E. C.
Rodrigues
et al, “
Pluronic® coated sterically stabilized magnetite nanoparticles for hyperthermia applications
,”
J. Magn. Magn. Mater.
416
,
434
440
(
2016
).
98.
T.
Sakai
and
P.
Alexandridis
, “
Single-step synthesis and stabilization of metal nanoparticles in aqueous pluronic block copolymer solutions at ambient temperature
,”
Langmuir
20
(
20
),
8426
8430
(
2004
).
99.
Y.
Tao
et al, “
Reduction-responsive gold-nanoparticle-conjugated Pluronic micelles: An effective anti-cancer drug delivery system
,”
J. Mater. Chem.
22
(
36
),
18864
18871
(
2012
).
100.
T.
Simon
,
S. C.
Boca
, and
S.
Astilean
, “
Pluronic-Nanogold hybrids: Synthesis and tagging with photosensitizing molecules
,”
Colloids Surf., B
97
,
77
83
(
2012
).
101.
T.
Simon
et al, “
Designing theranostic agents based on Pluronic stabilized gold nanoaggregates loaded with methylene blue for multimodal cell imaging and enhanced photodynamic therapy
,”
ACS Appl. Mater. Interfaces
7
(
30
),
16191
16201
(
2015
).
102.
Y.
Zheng
et al, “
pH-sensitive and pluronic-modified pullulan nanogels for greatly improved antitumor in vivo
,”
Int. J. Biol. Macromol.
139
,
277
289
(
2019
).
103.
D.
Rafael
et al, “
Efficient EFGR mediated siRNA delivery to breast cancer cells by Cetuximab functionalized Pluronic® F127/Gelatin
,”
Chem. Eng. J.
340
,
81
93
(
2018
).
104.
E. B.
Kang
et al, “
Pluronic mimicking fluorescent carbon nanoparticles conjugated with doxorubicin via acid-cleavable linkage for tumor-targeted drug delivery and bioimaging
,”
J. Ind. Eng. Chem.
43
,
150
157
(
2016
).
105.
H.
Park
and
K.
Na
, “
Conjugation of the photosensitizer Chlorin e6 to pluronic F127 for enhanced cellular internalization for photodynamic therapy
,”
Biomaterials
34
(
28
),
6992
7000
(
2013
).
106.
Y.
Chen
et al, “
Enhanced antitumor efficacy by methotrexate conjugated Pluronic mixed micelles against KBv multidrug resistant cancer
,”
Int. J. Pharm.
452
(
1–2
),
421
433
(
2013
).
107.
N.-A. N.
Tong
et al, “
Aquated cisplatin and heparin-pluronic nanocomplexes exhibiting sustainable release of active platinum compound and NCI-H460 lung cancer cell antiproliferation
,”
J. Biomater. Sci., Polym. Ed.
27
(
8
),
709
720
(
2016
).
108.
J. B.
da Silva
et al, “
Interaction between mucoadhesive cellulose derivatives and Pluronic F127: Investigation on the micelle structure and mucoadhesive performance
,”
Mater. Sci. Eng., C
119
,
111643
(
2021
).
109.
V. T.
Nguyen
et al, “
An in vitro investigation into targeted paclitaxel delivery nanomaterials based on chitosan-Pluronic P123-biotin copolymer for inhibiting human breast cancer cells
,”
J. Drug Delivery Sci. Technol.
66
,
102807
(
2021
).
110.
A.
Russo
et al, “
Biotin-targeted Pluronic® P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells
,”
Int. J. Pharm.
511
(
1
),
127
139
(
2016
).
111.
D. S.
Pellosi
et al, “
Multifunctional theranostic Pluronic mixed micelles improve targeted photoactivity of Verteporfin in cancer cells
,”
Mater. Sci. Eng., C
71
,
1
9
(
2017
).
112.
A.
Salunkhe
et al, “
MRI guided magneto-chemotherapy with high-magnetic-moment iron oxide nanoparticles for cancer theranostics
,”
ACS Appl. Bio Mater.
3
(
4
),
2305
2313
(
2020
).
113.
Y.
Sun
et al, “
Temperature-sensitive gold nanoparticle-coated Pluronic-PLL nanoparticles for drug delivery and chemo-photothermal therapy
,”
Theranostics
7
(
18
),
4424
(
2017
).
114.
X.
Xu
et al, “
Polymeric micelle-coated mesoporous silica nanoparticle for enhanced fluorescent imaging and pH-responsive drug delivery
,”
Chem. Eng. J.
279
,
851
860
(
2015
).
115.
Y.-S.
Jung
et al, “
Thermo-sensitive injectable hydrogel based on the physical mixing of hyaluronic acid and Pluronic F-127 for sustained NSAID delivery
,”
Carbohydr. Polym.
156
,
403
408
(
2017
).
116.
P.
Makvandi
et al, “
Hyaluronic acid/corn silk extract based injectable nanocomposite: A biomimetic antibacterial scaffold for bone tissue regeneration
,”
Mater. Sci. Eng., C
107
,
110195
(
2020
).
117.
M.-Y.
Yeh
et al, “
Reverse thermo-responsive hydrogels prepared from Pluronic F127 and gelatin composite materials
,”
RSC Adv.
7
(
34
),
21252
21257
(
2017
).
118.
D.
Tatini
et al, “
Pluronic/gelatin composites for controlled release of actives
,”
Colloids Surf., B
135
,
400
407
(
2015
).
119.
M. T.
Pelegrino
et al, “
Biocompatible and antibacterial nitric oxide-releasing Pluronic F-127/chitosan hydrogel for topical applications
,”
Polymers
10
(
4
),
452
(
2018
).
120.
L.-S.
Yap
and
M.-C.
Yang
, “
Thermo-reversible injectable hydrogel composing of pluronic F127 and carboxymethyl hexanoyl chitosan for cell-encapsulation
,”
Colloids Surf., B
185
,
110606
(
2020
).
121.
T.
Jayaramudu
et al, “
Chitosan-pluronic based Cu nanocomposite hydrogels for prototype antimicrobial applications
,”
Int. J. Biol. Macromol.
143
,
825
832
(
2020
).
122.
X. Y.
Xiong
,
K. C.
Tam
, and
L. H.
Gan
, “
Polymeric nanostructures for drug delivery applications based on Pluronic copolymer systems
,”
J. Nanosci. Nanotechnol.
6
(
9–10
),
2638
2650
(
2006
).
123.
J.-T.
Li
et al, “
Chemical modification of surface active poly(ethylene oxide)−poly (propylene oxide) triblock copolymers
,”
Bioconjugate Chem.
7
(
5
),
592
599
(
1996
).
124.
L.
Bromberg
, “
Novel family of thermogelling materials via C−C bonding between poly(acrylic acid) and poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide)
,”
J. Phys. Chem. B
102
(
11
),
1956
1963
(
1998
).
125.
X. Y.
Xiong
,
K. C.
Tam
, and
L. H.
Gan
, “
Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions
,”
Macromolecules
36
(
26
),
9979
9985
(
2003
). Further permissions related to the material excerpted should be directed to the ACS.
126.
E.-R.
Kenawy
,
S.
Abdelhady
, and
M. M.
Azaam
, “
Chemical modification, electrospinning and biological activities of pluronic F68
,”
Polym. Bull.
80
(
5
),
5725
5740
(
2023
).
127.
M.
Cagel
et al, “
Polymeric mixed micelles as nanomedicines: Achievements and perspectives
,”
Eur. J. Pharm. Biopharm.
113
,
211
228
(
2017
).
128.
D. A.
Chiappetta
and
A.
Sosnik
, “
Poly(ethylene oxide)–poly(propylene oxide) block copolymer micelles as drug delivery agents: Improved hydrosolubility, stability and bioavailability of drugs
,”
Eur. J. Pharm. Biopharm.
66
(
3
),
303
317
(
2007
).
129.
A. B. E.
Attia
et al, “
Mixed micelles self-assembled from block copolymers for drug delivery
,”
Curr. Opin. Colloid Interface Sci.
16
(
3
),
182
194
(
2011
).
130.
Z.
Wei
et al, “
Paclitaxel-loaded Pluronic P123/F127 mixed polymeric micelles: Formulation, optimization and in vitro characterization
,”
Int. J. Pharm.
376
(
1–2
),
176
185
(
2009
).
131.
W.
Zhang
et al, “
Multifunctional Pluronic P123/F127 mixed polymeric micelles loaded with paclitaxel for the treatment of multidrug resistant tumors
,”
Biomaterials
32
(
11
),
2894
2906
(
2011
).
132.
L.
Chen
et al, “
Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: Optimization and in vitro, in vivo evaluation
,”
Int. J. Nanomed.
8
,
73
84
(
2013
).
133.
I.
Pepić
et al, “
Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications
,”
Drug Dev. Ind. Pharm.
40
(
7
),
944
951
(
2014
).
134.
D. S.
Pellosi
et al, “
Pluronic® mixed micelles as efficient nanocarriers for benzoporphyrin derivatives applied to photodynamic therapy in cancer cells
,”
J. Photochem. Photobiol., A
314
,
143
154
(
2016
). Further permissions related to the material excerpted should be directed to the Elsevier.
135.
J.
Kaur
,
P.
Singla
, and
I.
Kaur
, “
Binary Pluronics based mixed micellar systems: Effective solution for improved solubilization of Biochanin A
,”
Spectrochim. Acta, Part A
304
,
123279
(
2024
). Further permissions related to the material excerpted should be directed to the Elsevier.
136.
A. M.
Gerardos
,
A.
Balafouti
, and
S.
Pispas
, “
Mixed copolymer micelles for nanomedicine
,”
Nanomanufacturing
3
(
2
),
233
247
(
2023
).
137.
G. E.
Newby
et al, “
Structure, rheology and shear alignment of Pluronic block copolymer mixtures
,”
J. Colloid Interface Sci.
329
(
1
),
54
61
(
2009
).
138.
I.
Boucenna
et al, “
Structure and thermorheology of concentrated Pluronic copolymer micelles in the presence of laponite particles
,”
Langmuir
26
(
18
),
14430
14436
(
2010
).
139.
C. W.
Macosko
, Rheology: Principles, Measurements, and Applications (
Wiley VCH
,
New York
,
1994
).
140.
V.
Lenaerts
et al, “
Temperature-dependent rheological behavior of Pluronic F-127 aqueous solutions
,”
Int. J. Pharm.
39
(
1–2
),
121
127
(
1987
).
141.
Y.
Shachaf
,
M.
Gonen-Wadmany
, and
D.
Seliktar
, “
The biocompatibility of Pluronic® F127 fibrinogen-based hydrogels
,”
Biomaterials
31
(
10
),
2836
2847
(
2010
).
142.
I. M. A.
Diniz
et al, “
Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells
,”
J. Mater. Sci.
26
,
153
(
2015
).
143.
M.
Jalaal
et al, “
On the rheology of Pluronic F127 aqueous solutions
,”
J. Rheol.
61
(
1
),
139
146
(
2017
).
144.
M.
Ben Henda
,
N.
Ghaouar
, and
A.
Gharbi
, “
Rheological properties and reverse micelles conditions of PEO-PPO-PEO Pluronic F68: Effects of temperature and solvent mixtures
,”
J. Polymers
2013
,
768653
.
145.
M.
Bercea
,
R.
Nicoleta Darie
, and
S.
Morariu
, “
Rheological investigation of xanthan/Pluronic F127 hydrogels
,”
Rev. Roum. Chim.
58
(
2–3
),
189
196
(
2013
).
146.
P.
Bahadur
and
K.
Pandya
, “
Aggregation behavior of Pluronic P-94 in water
,”
Langmuir
8
(
11
),
2666
2670
(
1992
).
147.
J. P.
Mata
et al, “
Concentration, temperature, and salt-induced micellization of a triblock copolymer Pluronic L64 in aqueous media
,”
J. Colloid Interface Sci.
292
(
2
),
548
556
(
2005
).
148.
M.
Zhang
et al, “
Nanostructured fluids from pluronic® mixtures
,”
Int. J. Pharm.
454
(
2
),
599
610
(
2013
).
149.
C.
Pradal
et al, “
Gelation kinetics and viscoelastic properties of pluronic and α-cyclodextrin-based pseudopolyrotaxane hydrogels
,”
Biomacromolecules
14
(
10
),
3780
3792
(
2013
).
150.
H.-R.
Lin
and
K. C.
Sung
, “
Carbopol/pluronic phase change solutions for ophthalmic drug delivery
,”
J. Controlled Release
69
(
3
),
379
388
(
2000
).
151.
V.
Castelletto
et al, “
Wormlike micelle formation and flow alignment of a Pluronic block copolymer in aqueous solution
,”
Langmuir
23
(
13
),
6896
6902
(
2007
).
152.
K. T.
Lauser
,
A. L.
Rueter
, and
M. A.
Calabrese
, “
Small-volume extensional rheology of concentrated protein and protein-excipient solutions
,”
Soft Matter
17
(
42
),
9624
9635
(
2021
).
153.
D. Y.
Zhang
and
M. A.
Calabrese
, “
Temperature-controlled dripping-onto-substrate (DoS) extensional rheometry of polymer micelle solutions
,”
Soft Matter
18
(
20
),
3993
4008
(
2022
).
154.
D. S.
Sivia
,
Elementary Scattering Theory: For X-Ray and Neutron Users
(
Oxford University Press
,
2011
).
155.
D.
Lombardo
,
P.
Calandra
, and
M. A.
Kiselev
, “
Structural characterization of biomaterials by means of small angle X-rays and neutron scattering (SAXS and SANS), and light scattering experiments
,”
Molecules
25
(
23
),
5624
(
2020
). Further permissions related to the material excerpted should be directed to the MDPI.
156.
B.
Chu
and
T.
Liu
, “
Characterization of nanoparticles by scattering techniques
,”
J. Nanopart. Res.
2
,
29
41
(
2000
).
157.
P. K.
Sharma
and
S. R.
Bhatia
, “
Effect of anti-inflammatories on Pluronic® F127: Micellar assembly, gelation and partitioning
,”
Int. J. Pharm.
278
(
2
),
361
377
(
2004
).
158.
R.
Basak
and
R.
Bandyopadhyay
, “
Encapsulation of hydrophobic drugs in Pluronic F127 micelles: Effects of drug hydrophobicity, solution temperature, and pH
,”
Langmuir
29
(
13
),
4350
4356
(
2013
).
159.
Y.
Kadam
,
U.
Yerramilli
, and
A.
Bahadur
, “
Solubilization of poorly water-soluble drug carbamezapine in Pluronic® micelles: Effect of molecular characteristics, temperature and added salt on the solubilizing capacity
,”
Colloids Surf., B
72
(
1
),
141
147
(
2009
).
160.
P.
Singla
et al, “
Temperature-dependent solubilization of the hydrophobic antiepileptic drug lamotrigine in different pluronic micelles—A spectroscopic, heat transfer method, small-angle neutron scattering, dynamic light scattering, and in vitro release study
,”
ACS Omega
4
(
6
),
11251
11262
(
2019
).
161.
S.
Alexander
et al, “
Growth and shrinkage of pluronic micelles by uptake and release of flurbiprofen: Variation of pH
,”
Langmuir
28
(
16
),
6539
6545
(
2012
).
162.
D.
Wei
,
L.
Ge
, and
R.
Guo
, “
Effect of hydrophilically modified ibuprofen on thermoresponsive gelation of pluronic copolymer
,”
Colloids Surf., A
553
,
1
10
(
2018
).
163.
S.
Bayati
et al, “
Effects of bile salt sodium glycodeoxycholate on the self-assembly of PEO–PPO–PEO triblock copolymer P123 in aqueous solution
,”
Langmuir
31
(
50
),
13519
13527
(
2015
).
164.
S.
Bayati
et al, “
Complexes of PEO-PPO-PEO triblock copolymer P123 and bile salt sodium glycodeoxycholate in aqueous solution: A small angle X-ray and neutron scattering investigation
,”
Colloids Surf., A
504
,
426
436
(
2016
).
165.
S.
Chatterjee
et al, “
Dual-responsive (pH/temperature) Pluronic F-127 hydrogel drug delivery system for textile-based transdermal therapy
,”
Sci. Rep.
9
(
1
),
11658
(
2019
).
166.
K.
Mortensen
and
Y.
Talmon
, “
Cryo-TEM and SANS microstructural study of Pluronic polymer solutions
,”
Macromolecules
28
(
26
),
8829
8834
(
1995
).
167.
P.
Bahadur
et al, “
Effect of potassium fluoride on the micellar behavior of Pluronic F-68 in aqueous solution
,”
Langmuir
8
(
8
),
1903
1907
(
1992
).
168.
M. J.
Park
et al, “
Phase behavior of a PEO-PPO-PEO triblock copolymer in aqueous solutions: Two gelation mechanisms
,”
Macromol. Res.
10
,
325
331
(
2002
).
169.
A. M.
Bodratti
and
P.
Alexandridis
, “
Amphiphilic block copolymers in drug delivery: Advances in formulation structure and performance
,”
Expert Opin. Drug Delivery
15
(
11
),
1085
1104
(
2018
).
170.
C.-F.
Lee
et al, “
Synergistic effect of binary mixed-Pluronic systems on temperature dependent self-assembly process and drug solubility
,”
Polymers
10
(
1
),
105
(
2018
).
171.
A.
Raval
et al, “
Systematic characterization of Pluronic® micelles and their application for solubilization and in vitro release of some hydrophobic anticancer drugs
,”
J. Mol. Liq.
230
,
473
481
(
2017
).
172.
P.
Singla
,
S.
Chabba
, and
R. K.
Mahajan
, “
A systematic physicochemical investigation on solubilization and in vitro release of poorly water soluble oxcarbazepine drug in pluronic micelles
,”
Colloids Surf., A
504
,
479
488
(
2016
).
173.
A.
Parmar
,
S.
Chavda
, and
P.
Bahadur
, “
Pluronic–cationic surfactant mixed micelles: Solubilization and release of the drug hydrochlorothiazide
,”
Colloids Surf., A
441
,
389
397
(
2014
).
174.
S. J.
Shaikh
et al, “
Enhanced solubility and oral bioavailability of hydrophobic drugs using pluronic nanomicelles: An in‐vitro evaluation
,”
ChemistrySelect
6
(
28
),
7040
7048
(
2021
).
175.
L.
Tavano
et al, “
Effect of formulations variables on the in vitro percutaneous permeation of Sodium Diclofenac from new vesicular systems obtained from Pluronic triblock copolymers
,”
Colloids Surf., B
79
(
1
),
227
234
(
2010
).
176.
R.
Asasutjarit
et al, “
Optimization and evaluation of thermoresponsive diclofenac sodium ophthalmic in situ gels
,”
Int. J. Pharm.
411
(
1–2
),
128
135
(
2011
).
177.
E.
Russo
and
C.
Villa
, “
Poloxamer hydrogels for biomedical applications
,”
Pharmaceutics
11
(
12
),
671
(
2019
).
178.
Z. M. A.
Fathalla
et al, “
Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies
,”
Eur. J. Pharm. Biopharm.
114
,
119
134
(
2017
).
179.
S. D.
Desai
and
J.
Blanchard
, “
In vitro evaluation of pluronic F127-based controlled-release ocular delivery systems for pilocarpine
,”
J. Pharm. Sci.
87
(
2
),
226
230
(
1998
).
180.
S.
Khan
et al, “
Evaluation of microneedles-assisted in situ depot forming poloxamer gels for sustained transdermal drug delivery
,”
Drug Delivery Transl. Res.
9
,
764
782
(
2019
).
181.
A.
Sivaraman
and
A. K.
Banga
, “
Novel in situ forming hydrogel microneedles for transdermal drug delivery
,”
Drug Delivery Transl. Res.
7
,
16
26
(
2017
).
182.
S. S.
Shidhaye
et al, “
Buccal drug delivery of pravastatin sodium
,”
AAPS PharmSciTech
11
(
1
),
416
424
(
2010
).
183.
N.
Zeng
et al, “
Poloxamer bioadhesive hydrogel for buccal drug delivery: Cytotoxicity and trans-epithelial permeability evaluations using TR146 human buccal epithelial cell line
,”
Int. J. Pharm.
495
(
2
),
1028
1037
(
2015
).
184.
M.
Morishita
et al, “
Pluronic® F-127 gels incorporating highly purified unsaturated fatty acids for buccal delivery of insulin
,”
Int. J. Pharm.
212
(
2
),
289
293
(
2001
).
185.
K.
Kamimura
et al, “
Advances in gene delivery systems
,”
Pharm. Med.
25
,
293
306
(
2011
).
186.
M. K.
Riley
and
W.
Vermerris
, “
Recent advances in nanomaterials for gene delivery—A review
,”
Nanomaterials
7
(
5
),
94
(
2017
).
187.
A.
Kabanov
,
J.
Zhu
, and
V.
Alakhov
, “
Pluronic block copolymers for gene delivery
,”
Adv. Genet.
53
,
231
261
(
2005
).
188.
K. L.
March
,
J. E.
Madison
, and
B. C.
Trapnell
, “
Pharmacokinetics of adenoviral vector-mediated gene delivery to vascular smooth muscle cells: Modulation by poloxamer 407 and implications for cardiovascular gene therapy
,”
Hum. Gene Ther.
6
(
1
),
41
53
(
1995
).
189.
K. L.
Dishart
et al, “
Third-generation lentivirus vectors efficiently transduce and phenotypically modify vascular cells: Implications for gene therapy
,”
J. Mol. Cell. Cardiol.
35
(
7
),
739
748
(
2003
).
190.
M.
Riera
et al, “
Intramuscular SP1017‐formulated DNA electrotransfer enhances transgene expression and distributes hHGF to different rat tissues
,”
J. Gene Med.
6
(
1
),
111
118
(
2004
).
191.
C. L.
Gebhart
et al, “
Design and formulation of polyplexes based on Pluronic-polyethyleneimine conjugates for gene transfer
,”
Bioconjugate Chem.
13
(
5
),
937
944
(
2002
).
192.
D.
Fischer
et al, “
In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis
,”
Biomaterials
24
(
7
),
1121
1131
(
2003
).
193.
A.
Calarco
et al, “
The genotoxicity of PEI-based nanoparticles is reduced by acetylation of polyethylenimine amines in human primary cells
,”
Toxicol. Lett.
218
(
1
),
10
17
(
2013
).
194.
Z.
Wu
et al, “
Peptide-mediated tumor targeting by a degradable nano gene delivery vector based on Pluronic-modified polyethylenimine
,”
Nanoscale Res. Lett.
11
,
122
(
2016
). Further permissions related to the material excerpted should be directed to the Springer.
195.
J.
Hu
et al, “
Low-molecular weight polyethylenimine modified with Pluronic 123 and RGD-or chimeric RGD-NLS peptide: Characteristics and transfection efficacy of their complexes with plasmid DNA
,”
Molecules
21
(
5
),
655
(
2016
).
196.
M.
Magalhães
et al, “
miR-29b and retinoic acid co-delivery: A promising tool to induce a synergistic antitumoral effect in non-small cell lung cancer cells
,”
Drug Delivery Transl. Res.
10
,
1367
1380
(
2020
).
197.
M. S.
Chapekar
, “
Tissue engineering: Challenges and opportunities
,”
J. Biomed. Mater. Res.
53
(
6
),
617
620
(
2000
).
198.
Y.
Ikada
, “
Challenges in tissue engineering
,”
J. R. Soc. Interface
3
(
10
),
589
601
(
2006
).
199.
P.
Zarrintaj
et al, “
Thermo-sensitive polymers in medicine: A review
,”
Eur. Polym. J.
117
,
402
423
(
2019
).
200.
S.
Bajaj
et al, “
Protective effect of P188 in the model of acute trauma to human ankle cartilage: The mechanism of action
,”
J. Orthop. Trauma
24
(
9
),
571
576
(
2010
). Further permissions related to the material excerpted should be directed to the Wolters Kluwer.
201.
S. S.
Sohn
et al, “
Biomimetic and photo crosslinked hyaluronic acid/pluronic F127 hydrogels with enhanced mechanical and elastic properties to be applied in tissue engineering
,”
Macromol. Res.
24
,
282
291
(
2016
). Further permissions related to the material excerpted should be directed to the Springer.
202.
Y.
Cao
et al, “
Comparative study of the use of poly (glycolic acid), calcium alginate and pluronics in the engineering of autologous porcine cartilage
,”
J. Biomater. Sci., Polym. Ed.
9
(
5
),
475
487
(
1998
).
203.
K. E.
Park
et al, “
Basic fibroblast growth factor-encapsulated PCL nano/microfibrous composite scaffolds for bone regeneration
,”
Polymer
76
,
8
16
(
2015
).
204.
Y.
Maazouz
et al, “
Self-hardening and thermoresponsive alpha tricalcium phosphate/pluronic pastes
,”
Acta Biomater.
49
,
563
574
(
2017
).
205.
X.-Y.
Wang
et al, “
Thermosensitive composite hydrogel with antibacterial, immunomodulatory, and osteogenic properties promotes periodontal bone regeneration via staged release of doxycycline and proanthocyanidin
,”
Mater. Today Chem.
38
,
102052
(
2024
).
206.
S. H.
Oh
et al, “
Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit
,”
Biomaterials
29
(
11
),
1601
1609
(
2008
). Further permissions related to the material excerpted should be directed to the Elsevier.
207.
D. J.
Curry
et al, “
Surfactant poloxamer 188—related decreases in inflammation and tissue damage after experimental brain injury in rats
,”
J. Neurosurg.
101
(
2
),
91
96
(
2004
).
208.
J. D.
Marks
et al, “
Amphiphilic, tri‐block copolymers provide potent, membrane‐targeted neuroprotection
,”
FASEB J.
15
(
6
),
1107
1109
(
2001
).
209.
T. H.
Dung
,
L. T.
Huong
, and
H.
Yoo
, “
Morphological feature of pluronic F127 and its application in burn treatment
,”
J. Nanosci. Nanotechnol.
18
(
2
),
829
832
(
2018
).
210.
L. H.
Dang
et al, “
Injectable nanocurcumin-formulated chitosan-g-pluronic hydrogel exhibiting a great potential for burn treatment
,”
J. Healthcare Eng.
2018
,
5754890
. Further permissions related to the material excerpted should be directed to the Wiley.
211.
S. A.
Shah
et al, “
Chitosan and carboxymethyl cellulose-based 3D multifunctional bioactive hydrogels loaded with nano-curcumin for synergistic diabetic wound repair
,”
Int. J. Biol. Macromol.
227
,
1203
1220
(
2023
).
212.
D. H.
Kim
et al, “
Preparation of thermosensitive gelatin-pluronic copolymer for cartilage tissue engineering
,”
Macromol. Res.
18
,
387
391
(
2010
).
213.
J.
Cortiella
et al, “
Tissue-engineered lung: An in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth
,”
Tissue Eng.
12
(
5
),
1213
1225
(
2006
).
214.
D.
Filip
et al, “
Hydroxypropyl cellulose/pluronic-based composite hydrogels as biodegradable mucoadhesive scaffolds for tissue engineering
,”
Gels
8
(
8
),
519
(
2022
).
215.
J.-M.
Brunet-Maheu
et al, “
Pluronic F-127 as a cell carrier for bone tissue engineering
,”
J. Biomater. Appl.
24
(
3
),
275
287
(
2009
).
216.
P. N.
Taşlı
et al, “
Effect of F68, F127, and P85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells
,”
J. Endodontics
39
(
10
),
1265
1271
(
2013
).
217.
A.
Schwab
et al, “
Printability and shape fidelity of bioinks in 3D bioprinting
,”
Chem. Rev.
120
(
19
),
11028
11055
(
2020
).
218.
F.
Kabirian
and
M.
Mozafari
, “
Decellularized ECM-derived bioinks: Prospects for the future
,”
Methods
171
,
108
118
(
2020
).
219.
L.
Valot
et al, “
Chemical insights into bioinks for 3D printing
,”
Chem. Soc. Rev.
48
(
15
),
4049
4086
(
2019
).
220.
L.
Zhou
,
J.
Fu
, and
Y.
He
, “
A review of 3D printing technologies for soft polymer materials
,”
Adv. Funct. Mater.
30
(
28
),
2000187
(
2020
).
221.
R.
Suntornnond
,
J.
An
, and
C. K.
Chua
, “
Bioprinting of thermoresponsive hydrogels for next generation tissue engineering: A review
,”
Macromol. Mater. Eng.
302
(
1
),
1600266
(
2017
).
222.
M. P.
Bomediano
et al, “
Monitoring the micellar packing of photo-crosslinkable Pluronic F127 dimethacrylate during 3D printing
,”
Front. Soft Matter
4
,
1354122
(
2024
). Further permissions related to the material excerpted should be directed to the Frontiers.
223.
J.
Lee
et al, “
A 3D printing strategy for fabricating in situ topographical scaffolds using pluronic F-127
,”
Addit. Manuf.
32
,
101023
(
2020
).
224.
Z.
Fu
,
V.
Angeline
, and
W.
Sun
, “
Evaluation of printing parameters on 3D extrusion printing of pluronic hydrogels and machine learning guided parameter recommendation
,”
Int. J. Bioprint.
7
(
4
),
434
(
2024
).
225.
K. B. C.
Imani
et al, “
High‐resolution 3D printing of mechanically tough hydrogels prepared by thermo‐responsive poloxamer ink platform
,”
Macromol. Rapid Commun.
43
(
2
),
2100579
(
2022
).
226.
K.
Zhou
et al, “
Fabrication of PDMS microfluidic devices using nanoclay-reinforced Pluronic F-127 as a sacrificial ink
,”
Biomed. Mater.
16
(
4
),
045005
(
2021
). Further permissions related to the material excerpted should be directed to the IOP.
227.
H.
Chen
et al, “
Thermal-responsive and 3D printable hydrogel based on an acylhydrazine-terminated dynamic covalent bond and Pluronic F127
,”
ACS Appl. Polym. Mater.
4
(
9
),
6312
6321
(
2022
).
228.
S.
Pan
et al, “
Hydrogel modification of 3D printing hybrid tracheal scaffold to construct an orthotopic transplantation
,”
Am. J. Transl. Res.
14
(
5
),
2910
(
2022
).
229.
F.
Puza
et al, “
Biocompatible, 3D printable magnetic soft actuators—Ink formulation, rheological characterization and hydrogel actuator prototypes
,”
Macro. Mater. Eng.
309
(
3
),
2300322
(
2024
).
230.
A. V.
Kabanov
and
V. Y.
Alakhov
, “
Pluronic® block copolymers in drug delivery: From micellar nanocontainers to biological response modifiers
,”
Crit. Rev. Ther. Drug Carrier Syst.
19
(
1
),
1
72
(
2002
).
231.
A. V.
Kabanov
,
E. V.
Batrakova
, and
V. Y.
Alakhov
, “
Pluronic® block copolymers for overcoming drug resistance in cancer
,”
Adv. Drug Delivery Rev.
54
(
5
),
759
779
(
2002
).
232.
E. V.
Batrakova
et al, “
Pluronic P85 enhances the delivery of digoxin to the brain: In vitro and in vivo studies
,”
J. Pharmacol. Exp. Ther.
296
(
2
),
551
557
(
2001
).
233.
E. V.
Batrakova
et al, “
Effect of pluronic P85 on ATPase activity of drug efflux transporters
,”
Pharm. Res.
21
,
2226
2233
(
2004
).
234.
E. T.
Papoutsakis
, “
Fluid-mechanical damage of animal cells in bioreactors
,”
Trends Biotechnol.
9
(
1
),
427
437
(
1991
).
235.
Z.
Zhang
,
M.
Al-Rubeai
, and
C. R.
Thomas
, “
Effect of Pluronic F-68 on the mechanical properties of mammalian cells
,”
Enzyme Microb. Technol.
14
(
12
),
980
983
(
1992
).
236.
H.
Ghebeh
,
A.
Handa-Corrigan
, and
M.
Butler
, “
Development of an assay for the measurement of the surfactant pluronic F-68 in mammalian cell culture medium
,”
Anal. Biochem.
262
(
1
),
39
44
(
1998
).
237.
J. E.
Matthew
et al, “
Effect of mammalian cell culture medium on the gelation properties of Pluronic® F127
,”
Biomaterials
23
(
23
),
4615
4619
(
2002
).
238.
A.
Arranja
et al, “
Interactions of Pluronic nanocarriers with 2D and 3D cell cultures: Effects of PEO block length and aggregation state
,”
J. Controlled Release
224
,
126
135
(
2016
).
239.
N. V.
Mdlovu
et al, “
Green synthesis and characterization of silicate nanostructures coated with Pluronic F127/gelatin for triggered drug delivery in tumor microenvironments
,”
Int. J. Biol. Macromol.
251
,
126337
(
2023
).
240.
M. W.
Edens
and
R. H.
Whitmarsh
, “
Applications of block copolymer surfactants
,” in
Developments in Block Copolymer Science and Technology
, edited by I. W. Hamley (Wiley, 2004).
241.
I.
Grillo
,
I.
Morfin
, and
S.
Prévost
, “
Structural characterization of Pluronic micelles swollen with perfume molecules
,”
Langmuir
34
(
44
),
13395
13408
(
2018
).
242.
Y.
Han
et al, “
Effect of nucleoside analogue antimetabolites on the structure of PEO–PPO–PEO micelles investigated by SANS
,”
Phys. Chem. Chem. Phys.
19
(
24
),
15686
15692
(
2017
).
243.
P.
Ragu
et al, “
The characterization of Pluronic P123 micelles in the presence of sunscreen agents
,”
Intern. J. Cosmetic Sci.
45
(
4
),
470
479
(
2023
).
244.
D.
Mawad
,
A.
Lauto
, and
G. G.
Wallace
, “
Conductive polymer hydrogels
,”
Polymeric Hydrogels as Smart Biomaterials
(Springer,
2016
), pp.
19
44
.
245.
S.
Agarwala
, “
Electrically conducting hydrogels for health care: Concept, fabrication methods, and applications
,”
Int. J. Bioprint.
6
(
2
),
273
(
2024
).
246.
L.
Leprince
et al, “
Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes
,”
J. Mater. Sci.
21
,
925
930
(
2010
).
247.
R.
Balint
,
N. J.
Cassidy
, and
S. H.
Cartmell
, “
Conductive polymers: Towards a smart biomaterial for tissue engineering
,”
Acta Biomater.
10
(
6
),
2341
2353
(
2014
).
248.
C. L.
Weaver
et al, “
Electrically controlled drug delivery from graphene oxide nanocomposite films
,”
ACS Nano
8
(
2
),
1834
1843
(
2014
).
249.
V.
Pillay
et al, “
A review of integrating electroactive polymers as responsive systems for specialized drug delivery applications
,”
J. Biomed. Mater. Res.
102
(
6
),
2039
2054
(
2014
).
250.
H.
Huang
et al, “
Nanocomposite conductive tough hydrogel based on metal coordination reinforced covalent Pluronic F-127 micelle network for human motion sensing
,”
J. Colloid Interface Sci.
625
,
817
830
(
2022
).
251.
N. A.
Di Spirito
et al, “
Electrically conductive and antimicrobial Pluronic-based hydrogels
,”
J. Colloid Interface Sci.
679
,
544
553
(
2025
). Further permissions related to the material excerpted should be directed to the Elsevier.
252.
E. J. W.
Crossland
et al, “
A bicontinuous double gyroid hybrid solar cell
,”
Nano Lett.
9
(
8
),
2807
2812
(
2009
).
253.
Y.
Wan
and
N.
Zhao
, “
On the controllable soft-templating approach to mesoporous silicates
,”
Chem. Rev.
107
(
7
),
2821
2860
(
2007
).
254.
L.
Omer
et al, “
High-resolution cryogenic-electron microscopy reveals details of a hexagonal-to-bicontinuous cubic phase transition in mesoporous silica synthesis
,”
J. Am. Chem. Soc.
131
(
34
),
12466
12473
(
2009
).
255.
M. R. J.
Scherer
,
P. M. S.
Cunha
, and
U.
Steiner
, “
Labyrinth‐induced faceted electrochemical growth
,”
Adv. Mater.
26
(
15
),
2403
2407
(
2014
).
256.
S.
Akbar
et al, “
Facile production of ordered 3D platinum nanowire networks with “single diamond” bicontinuous cubic morphology
,”
Adv. Mater.
25
,
1160
1164
(
2013
).
257.
M. R.
Burton
et al, “
3D semiconducting nanostructures via inverse lipid cubic phases
,”
Sci. Rep.
7
(
1
),
6405
(
2017
).
258.
S.
Akbar
et al, “
Control of pore and wire dimensions in mesoporous metal nanowire networks through curvature modulation in lipid templates: Implications for use as electrodes
,”
ACS Appl. Nano Mater.
4
(
6
),
5717
5725
(
2021
).
259.
R.
Campbell
et al, “
Electrodeposition of mesoporous nickel onto foamed metals using surfactant and polymer templates
,”
J. Porous Mater.
11
,
63
69
(
2004
).
260.
A. A.
Al-Owais
and
I. S.
El-Hallag
, “
Fabrication and characterization of nanostructured mesoporous Ni(OH)2 electrode using Pluronic P84 PEO/PPO/PEO triblock copolymer template
,”
Int. J. Electrochem. Sci.
16
(
8
),
210827
(
2021
).
261.
N. A.
Di Spirito
et al, “
Green synthesis of catalytic 3
D
platinum nanostructures from a body‐centered cubic pluronic micellar array template
,”
Adv. Mater. Inter.
(published online) (
2024
). Further permissions related to the material excerpted should be directed to the Wiley.
You do not currently have access to this content.